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Abstract

Background: Biological pathways represent chains
of molecular interactions in biological systems that
jointly form complex dynamic networks. The net-
work structure changes from the significance of bio-
logical experiments and layout algorithms often sac-
rifice low-level details to maintain high-level infor-
mation, which complicates the entire image to large
biochemical systems such as human metabolic path-
ways.

Results: Our work is inspired by concepts from ur-
ban planning since we create a visual hierarchy of bi-
ological pathways, which is analogous to city blocks
and grid-like road networks in an urban area. We
automatize the manual drawing process of biolo-
gists by first partitioning the map domain into multi-
ple sub-blocks, and then building the corresponding
pathways by routing edges schematically, to main-
tain the global and local context simultaneously. Our
system incorporates constrained floor-planning and
network-flow algorithms to optimize the layout of
sub-blocks and to distribute the edge density along
the map domain. We have developed the approach in
close collaboration with domain experts and present
their feedback on the pathway diagrams based on
selected use cases.

Conclusions: We present a new approach for com-
puting biological pathway maps that untangles vi-
sual clutter by decomposing large networks into se-
mantic sub-networks and bundling long edges to cre-
ate space for presenting relationships systematically.

Keywords: biological pathways; graph drawing;
map metaphor; orthogonal layout; floor planning;
edge routing

1 Background

Due to the technological and scientific progress, we
see a tremendous increase in the knowledge and the
amount of collected data in the area of molecular biol-
ogy and biochemistry over the past years, and compu-
tational tools play a major role in this development.
One example of increasingly investigated and abun-
dant data are metabolic pathways, i.e., network struc-
tures of molecular interactions of biological systems.
Collections of such pathways form more complex and
hierarchical biological networks, and their careful anal-
ysis and understanding are important aspects for many
life sciences researchers. Research efforts provide new
experimental results, which expand the known net-
works or require modifications and revisions of previ-
ous data. Various initiatives and public databases exist
to maintain and curate this growing set of biological
network data.

An important step for researchers to make sense of
such large networks of biological pathways is to explore
visualizations such as pathway diagrams and network
layouts, and use them to communicate their respective
scientific results in the context of larger biological net-
works. Automatic network layout algorithms thus be-
come indispensable in the sense that manually creating
diagrams of large networks is a very time-consuming if
not impractical task, especially considering that the
underlying data may change frequently and require
permanent layout updates. Sometimes even drastic
layout changes are needed. For example, glucose is tra-
ditionally considered as a fast supply of energy, while
it is nowadays demonstrated that it also affects cancer
metabolism [1]. A manually created, static pathway di-
agram cannot be easily revised to incorporate such an
up-to-date information, and pathway designers would
need to deliberately move the glucose to a new po-
sition based on its changed functionalities. Moreover,
as there are several independently managed pathway
databases, visualization tools are needed to assist sci-
entists in investigating and understanding biological
relationships across multiple databases.

While several general-purpose network layout algo-
rithms exist, most of them are not specifically designed
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or particularly suitable for drawing biological path-
ways. This is because in a pathway diagram, detailed
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relationship information and the corresponding hier-
archical grouping structures are expected to be clearly
presented simultaneously for analysis and educational
purposes [2]. As consequence, biologists still use the
few existing high visual quality hand-drawn pathway
maps, in order to retrieve the entire image of the roles
of chemical components in the network. One example
regards human metabolic pathways, which are among
the most studied complex pathways and which have
been collected by several leading community-driven
databases [3, 4]. In 2013, Recon 2 [5], the most com-
prehensive metabolic reconstruction that is applica-
ble to computational modeling, was released. It in-
cludes about 5,063 metabolites and 7,440 reactions
and has been used to identify reasons and treatments
for diseases. Three years later, a hand-crafted path-
way map has been integrated with this reconstruc-
tion to allow users to explore existing gene expres-
sion patterns together with the entire metabolic net-
work. Scientists used this map to figure out how drugs
could possibly affect our physiological balance in order
to achieve certain treatment effect [4]. This map was
created by five undergraduate biochemists in over 20
months by manually reworking on the layout and fix-
ing the errors based on the information in the latest
literature. This requires tedious rerouting tasks and
still leads to some layout inconsistency due to the de-
cisions made by different collaborators. Other popu-
lar metabolic pathway maps, such as KEGG pathway
maps [3], Roche Biochemical Pathways [6], WikiPath-
ways [7, 8], and BRENDA Overview Map [9, 10] are
all manually drawn to achieve their high visual quality,
while revisions of them always took months. An auto-
matic layout approach facilitates this drawing process.
Recently, Reactome, a community-operated knowledge
base of biomolecular pathways, has incorporated an
automatically generated overview map. It relies on dy-
namic navigation to assist users in exploring various
sub-diagrams [11]. Although their overview layout is
computed using a conventional radial network layout
algorithm, strong domain knowledge and experience
are needed for correct zoom and pan operations. More-
over, tasks based on interaction can come with a time
trade-off, since finding particular labels by further ex-
ploring an abstract node could consume more time
than working with a single layout that has all suffi-
cient information [12].

The aforementioned pathway maps have the disad-
vantage that biologists need to explore several different
maps to build their mental models and knowledge, as
each relevant database has its own associated path-
way map. Further, there is a high cognitive load to
adjust one’s mental map whenever a new version of a
pathway map is released. This is because search perfor-
mance can be facilitated most robustly when objects
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are tied to spatial locations consistently [13]. From all
the above listed reasons it becomes clear that creating
high-quality biological pathway layouts automatically
(as well as manually) is a very challenging problem.
Consequently, in 2017, the annual contest of the In-
ternational Symposium on Graph Drawing and Net-
work Visualization [14] asked the network visualiza-
tion community to compete for the best layout of the
human metabolic pathway network. However, due to
the network’s size and complexity, only one layout pro-
duced by an aggregation-based technique was submit-
ted, which is another indicator of the difficulty to au-
tomate the task of creating meaningful biological net-
work layouts.

Metabopolis, the new method presented in this pa-
per is the first fully automatic approach for scalable vi-
sualization of biological pathways, aiming to combine
hierarchical overview with fine detail of individual re-
actions in order to produce layouts meaningful to the
scientific community. The main challenge is the large
number of nodes (metabolites) that are heavily inter-
connected via chemical reactions and how to route the
large number of edges without cluttering the pathway
map or distracting the user’s attention. Our work is
inspired by concepts from urban planning since we cre-
ate a visual hierarchy of biological pathways, which is
analogous to the specification of city blocks and grid-
like road networks in an urban area. This structure
is considered as the best to have strong mutual con-
nection between neighbors and distribute the traffic
density to enhance the sustainability of cities [15]. A
typical example is shown in Fig. 1(a). We adopt this
urban planning concepts and group the underlying hi-
erarchical structures of pathway datasets into multi-
ple rectangular blocks and route edges schematically
on the grid of gaps between blocks in order to have
avoid clutter and present both low-level and high-level
information. Here, low-level information refers to di-
rectional or bidirectional relationships between pairs of
chemical components and high-level information refers
to classified functionalities of these components. Fig-
ure 1(b) shows an abstraction of our maps, where cat-
egories are restricted using urban blocks (red, blue,
and green rectangles), and sub-graph components are
placed in building blocks within each category. The
gaps between rectangles serve as boulevards and roads
for routing edges to reduce visual complexity.

This is accomplished by automatically creating a
graph skeleton together with a possible manual ad-
justment to guide users’ design decisions followed by
a three-step optimization approach computing the fi-
nal network layout. In the optimization, we first par-
tition the map domain into multiple sub-blocks, then
construct the network inside each block, and finally
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build the corresponding pathway connectivity by rout-
ing inter-block edges based on the corresponding con-
text hierarchy.

Figure 2 presents an example of a diagram created
by Metabopolis, which includes eleven major pathways
presented in different colors. One of the main mecha-
nisms to produce energy in human body is the Gly-
colysis process (orange), where the red route shows
the set of reactions for the biological transformation of
glucose into pyruvate. This happens together with the
releasing of high-energy molecules of ATP, the univer-
sal energy currency used to drive more biological reac-
tions (see the green route). ATP then comes to the blue
route to synthesize urea. Our diagram allows us to read
this network by visually restricting information into
rectangular blocks to facilitate a better understanding
on the local and global contexts of the network. Our
technique enables us to compute the pathway diagram
of the entire human metabolism (see Fig. 11), which
has never been achieved in a comparable quality using
conventional network layout techniques.

The remainder of this paper is structured as follows:
Section 2 summarizes relevant related work. In Sec-
tion 3, we explain the introduced design criteria for
large pathway diagrams together with a summary of
our proposed system framework. The technical details
are presented in Sections 4-6. Section 4 explains the
steps for computing the floorplan layout of the hier-
archical grouping structure. Sections 5 and 6 present
the intra- and inter-block network layout, respectively.
Our implementation is detailed in Section 7 followed
by the use cases and discussion in Section 8. We con-
clude this paper and refer to future directions in Sec-
tion 9.

2 Related Work

In this section, we conduct a brief survey on the most
relevant related topics of this work, including pathway
visualization, space partitioning approaches, and map-
based network visualization.

2.1 Pathway Visualization

Since new biological pathways are unceasingly investi-
gated and added to pathway databases, pathway vi-
sualization [16, 17, 18, 19] has developed a variety
of alternative representations to support researchers
in reasoning about pathways. Murray et al. [2] sum-
marized common visualization tasks for the analysis
of biological pathway data. They consider relation-
ship tasks as the most essential tasks in their study.
Existing general-purpose network visualization tools
for highlighting hierarchical relationships are not that
suitable for biological pathways since low-level repre-
sentation may be aggregated to show the underlying
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grouping structures [20, 21]. Therefore, although sev-
eral network visualization techniques have been devel-
oped for this purpose, researchers still rely on the man-
ually designed pathway maps provided from biologi-
cal databases [3, 4]. Pathway editors such as CellDe-
signer [22], SBGN-ED [23], and Newt [24], and network
analysis tools such as Cytoscape [25] provide function-
alities for dynamic pathway analysis, while the lay-
out problem is still resource-consuming, especially for
graphs with more than 500 nodes. This is because the
underlying graph layout techniques are often devel-
oped for general purposes and cannot be easily applied
to large biological networks.

The investigation of biological pathway visualization
has mainly two directions, including drawing fine small
pathways and aggregating detailed pathways to visual-
ize high-level information. Several research works focus
on visually pleasing and well readable layout of small
biological networks, including rebuilding well-known
KEGG maps [26], overlaying omics data [27], align-
ing nodes on grids [28], and the most popular forced-
directed and hierarchical layouts summarized by Bach-
maier et al. [19]. Other works relied upon strong user
interactions on hand-drawn large but static maps [29].
Interactions such as semantic zooming [30] and ag-
gregation [31, 32] have been investigated to analyze
large networks. Although interactions have been im-
portant tools to facilitate users’ capabilities to under-
stand large datasets, it has also been studied that in-
teractive activities during the analysis process may
increase time for accomplishing simple connectivity
tasks [33]. Nevertheless, interaction is definitely a valu-
able way to support analytical processes, where users
can expand and collapse the visualization to retrieve
their target of interests. Unfortunately, neither of the
aforementioned directions resolves the difficulty on the
communication of knowledge since researchers always
need to rebuild their mental image to various maps
introduced by different databases. Compared to the
aforementioned interaction techniques, our approach
provides an alternative solution to biologists. This is
because we introduce a graph skeleton to assist biolo-
gists to design their pathway diagram, and introduce
orthogonal layout and edge routing to maintain the
readability of low-level and high-level relationship in-
formation.

2.2 Space Partitioning and Planning Techniques

Space partitioning algorithms using techniques based
on Voronoi diagrams [34], treemaps [35, 36], and floor
planning [37] subdivide a space into several disjoint
subregions and are often used to assign the screen
space in information visualization. Among these, floor
planning algorithms have been well investigated in
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very large scale integration (VLSI) design to generate
constrained high quality chip layout [37, 38]. In our
implementation, we select floor planning algorithms
as the basis of our optimization process due to their
flexibility in attaching user defined rectangles.

For example, Merrell et al. [39] developed an ap-
proach to automatically design room layouts trained
on real-world data and Ma et al. [40] calculated a room
plan based on a planar graph specified by game de-
signers. Both methods introduced configuration space
techniques to further constrain object placement dur-
ing the optimization process. The more high-level re-
quirements designers provide, the higher the compu-
tational time needed for the stochastic optimization.
In our approach, we introduce several constraints to
control appropriate block placement, which reproduce
results similar to hand-drawn pathway maps and limit
the search space for our optimization process.

2.3 Map and Network Visualization

Clustered network visualization has been studied
widely [41, 42, 43], but those works either focus on
small compound graphs or aggregate directed edges
due to the scalability of the approach. Rather we chose
a map metaphor for Metabopolis because maps are one
of the most popular visual representations to describe
object relationship and relative positions within a cer-
tain space [44]. A pioneering work of visualizing graphs
as maps, has been done by Gansner et al. [45, 46],
where they partition the map domain using a Voronoi
diagram and a force-directed algorithm to draw sub-
graphs in each Voronoi cell. Several works applying the
map metaphor were published subsequently, e.g., to-
pographic maps of clustered graphs [47], maps of com-
puter science [48], and GraphMaps [49]. As pathway
map designers often do, simplifying edge structures is
also studied in the context of map-based visualizations,
which include hierarchical Manhattan layout [50], road
maps [51, 52|, and metro maps [53]. Orthogonal graph
layout is a specific and well-studied type of schematic
layout, where edge segments are limited to horizontal
and vertical directions [54]. More recently, high-quality
compact orthogonal layout of small graphs was the fo-
cus of studies [55, 56]. In our layouts, we decompose a
large metabolic network into smaller sub-graphs to em-
ploy orthogonal layout algorithms such as HOLA [55]
or yFiles [57] compact layout for visualizing pathway
relationship in detail, which is the edge style favored
by pathway designers [3].

3 Overview of Metabopolis

A good biological pathway map should be an easy-
to-read visual representation of the molecules in a
cell and their relations through biochemical reactions
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in detail together with their corresponding hierarchi-
cal grouping structures [2]. Although, this criterion
is expected to be the leading criterion for the de-
sign of pathway diagrams, general graph drawing cri-
teria should also be taken into consideration. Notably,
these maps should preserve the mental images of bi-
ologists, which also affects users’ memorability of the
content [58]. Within the biological context, reactions
are often expressed using an arrow —, where the re-
actants are placed on the left and the products are
on the right. We can model a biological pathway net-

work using a bipartite directed graph G = (V, E),

where V = M U R. The nodes in M are the metabo-

lites and the nodes in R represent the reactions. A

directed edges e € FE represents the involvement of

metabolites in reactions as either reactant or prod-
uct. Note that each metabolite v,, € M can be in-

volved in multiple semantic categories ¢(vy,) C C (e.g.,

a subsystem defined in a standard ontology, a com-

partment of the cell, etc), while each reaction v, € R

belongs to a unique category c(v,.) € C. Moreover,

biochemical reactions can be either bidirectional (e.g.,

6002 + 6H20 < CGH1206 + 602) or unidirectional

(e.g., C3HgO3 + 3 CHg(CHQ)(;COOH — Cs5Hgg0g

+ 3H>0), which is essential for a comprehensive un-

derstanding of physiological processes.

Metabopolis provides a new type of pathway dia-
gram using an urban map metaphor to bridge the
gap between different hand-drawn pathway maps while
preserving the readability from low to high levels. Fig-
ure 3 depicts how automatic pathway maps can serve
as key media that allow users to share and communi-
cate their data. Users can automatically create maps
with similar category alignment and mutually share
them. The gap is closed by turning one-way (black ar-
rows) to round-way (green arrows) information deliv-
ery by enabling the entire community to interact with
the same data.

To accomplish this goal, we have first investigated all
well known hand-drawn pathways, and summarize the
challenges (A1-A3) of the existing pathway layouts
as follows:

(A1) Preserving a user’s mental map of the diagram
or customizing the network layout with updated
data are not easy. Domain experts need to adapt
to different layouts and map between different
mental models in order to use their knowledge
consistently.

(A2) No clutter management strategy exists to con-
trol the visual density between global and local
context. Metabolites involved in many reactions
are often high-degree nodes, some of which can
be significant (e.g. AT P, the energy currency of
the cell) and some can be less informative (e.g.
water molecules) to the scientists.



Wu et al.

(A3) A readable visual hierarchy is missing to present
low-level and high-level relationship information
simultaneously. Directed/bidirected edges and
categories are crucial to identify the roles of
chemical components in the physiological sys-
tem.

These three major challenges are tackled by our
pathway layout algorithm, and each of them will be
solved using three types of networks, a graph skeleton
G, an extended pathway network Gp, and two flow
networks Gy and Gy, respectively.

Our strategy to cope with (A1) is to introduce a
graph skeleton G¢ used to preserve or customize the
relative positioning of urban blocks in B¢, which corre-
sponds to the drawing area reserved for each category
¢ € C. The category here can refer to any seman-
tic category defined in the pathway ontology, where
we use the biological subsystems as a proof of con-
cept in our system. The graph skeleton is then defined
as Go = (B¢, E¢), where each block b. in Be is a
rectangular node for the corresponding category and
each edge e. € E¢ indicates the connectivity between
blocks. The initial position of a block and the connec-
tivity between a pair of blocks can be computed auto-
matically using our system or refined by the users. This
allows us to automatically place blocks sharing more
chemical components close to their neighborhood to
reduce long edges across the entire map domain.

Dealing with (A2) is achieved by the duplication
of the same high-degree or user-specified unimportant
metabolites that are connected by a secondary layer of
edges. This provides users an opportunity to discrim-
inate between important metabolites such as glucose
and unimportant ions such as water. All original and
duplicated nodes are collected in Vp, and correspond-
ing edges will be stored in Ep to form our new network
G p for visualization. Even though node duplication re-
duces edge density of a graph, several long edges may
occur in the layout. Therefore, we decompose long di-
rected edges into a set of directed and undirected edges
(see Fig. 4 (a)) so that we can bundle undirected edges,
which are less informative to control the visual density
between global and local context.

This allows us to visually discriminate high-degree
nodes into two types. The first type of metabolites are
unimportant (as specified by domain experts), and are
fully duplicated in Metabopolis. The second ones are
those metabolites serving as connectors, which are sig-
nificant targets of interests for biologists since they are
connected to reactions having different semantics and
should not be easily duplicated in the visualization.
Figure 4(b) shows an example of this design between
two categories (green and purple). We use colors to
highlight the roles of metabolites between each pair of
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categories, and there are all nine possible combinations
of the roles of the metabolites between two categories.
Take the first column for example, the green path in-
dicates that there exists a product metabolite m from
the green category that serves as a reactant in a reac-
tion in the purple category, but no inverse reaction is
allowed. Although the third column has the same color
coding as the first one, the output arrow indicates that
this product metabolite serves as a reactant in another
category but not the green one. With this design, we
can bundle long undirected edges along the boundary
of blocks, while not sacrificing the clarity of the edge
representation.

Finally, to deal with (A3), we create compact or-
thogonal drawings for sub-networks within each cat-
egory and bundle undirected edges along the bound-
ary of the blocks to achieve a readable visual hier-
archy of our maps. Note that map metaphors have
been proved as effective designs to visualize graphs
and clusters [45, 46], because of the geospatial posi-
tions of objects and their corresponding connections
can be shared between users as well as the general fa-
miliarity of maps among the public. Urban maps are
a specific type of map used to visualize buildings and
roads in a city. These objects are often simplified to
certain geometric shapes such as lines, rectangles, and
squares, in order to facilitate the general understand-
ing of graphical notations on maps. We follow this ex-
ample by restricting category information to be rep-
resented as rectangles and by aligning objects to un-
derlying grids in our diagrams. We align vertices and
edges on grids because this is a common strategy em-
ployed in many hand-drawn pathway diagrams [3, 4].

Figure 3 shows the pipeline of our algorithm, which
consists of five steps. (1) We first automatically con-
struct a spanning subgraph of the categories based on
the frequency of inter-category edges for guiding block
placement. In this step, users are also allowed to edit
the graph under certain constraints. (2) Afterwards we
apply a constrained floor-planning algorithm to attach
strongly-connected categories along a shared bound-
ary and produce an overlap-free block placement. (3)
Next, since the number of metabolites in each cate-
gory determines the block size, we adjust the size of
these blocks to optimize the screen space partitioning.
(4) Within each category block, we use an orthogonal
network layout to place and align metabolites and re-
actions on a grid. (5) Finally, we construct an auxiliary
flow network to disperse flows to optimize edge rout-
ing for connecting identical metabolites. Steps (1)-(3)
will be detailed in Section 4 and steps (4)-(5) will be
described in Sections 5 and 6.
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4 Urban Block Construction

In this section, we introduce how the map domain
is partitioned into multiple sub-blocks, while aligning
blocks with strong connectivity as neighbors using a
graph skeleton. We formulate the computational prob-
lem as a mized-integer programming (MIP) model, to
find a globally optimal solution.

4.1 Graph-Based Skeleton for Guiding Block Placement
Biologists usually investigate a specific protein or gene,
a set of specific pathways or more recently, due to
the improvement in pipelines for analysis of high-
throughput data, entire metabolic networks. In all
cases, they are interested to see the context of the re-
sults generated under their experiments, which leads
to comparison tasks on relationship between similar
sets of chemical components. Thus, a pathway diagram
with categorical information highlighted allows biolo-
gists to compare the relationship within one category
and between each other. We thus propose a graph-
based skeleton G¢, a spanning subgraph of the cat-
egory connectivity graph, to optimize the placement
of entire blocks. This is because connecting all pairs
of blocks sharing some reactants or products will cre-
ate a nearly complete connectivity graph, and it is
more important that blocks having dense connection
in-between should be placed next to each other.

We extend the conventional floor-planning problem
by adding additional alignment constraints to guaran-
tee the connection of all sub-blocks. This is achieved
by optimizing the block positions according to the con-
nectivity of G¢. Note that planar graphs have been
previously used to guide users for designing a room lay-
out [39, 40] guaranteeing a doorway continuity. How-
ever, our graph skeleton should not only serve this
purpose, but should also present users with a clear
information whether the designed graph will produce
a solvable result. All types of planar graphs are not
sufficient for the block placement in our case.

The skeleton graph G¢ provides an important in-
struction here because typically the category graph is
very dense and not all edges can be represented as
block adjacencies. Obviously, only planar graphs can
be represented by touching rectangles, but even some
planar graphs cannot be represented. If they have sep-
arating triangles (see K4 in Fig. 5(a)), it is known to
fail [59]. Inspired by the semantic word cloud tech-
nique [60], which also aims to optimize the placement
of touching rectangles, we know that if the skeleton is a
graph with only disjoint cycles (see Fig. 5(b)), a corre-
sponding floor plan always exists. Moreover, Fig. 5(c)
depicts another extreme case of the graph skeleton,
where a node with degree larger than four would also
produce an undesired layout since we cannot attach
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another big block to the green block. In summary, we
design our graph skeleton G¢ under constraints: the
graph (1) has to be planar, (2) has to contain only
edge-disjoint cycles, and (3) has maximum node degree
four. This will create a so-called chordless planar graph
(see Fig. 5(b)), which usually contains long chains.
Note that we do not aim to get a maximally dense pla-
nar graph, but rather one that maintains a sufficient
degree of flexibility. Our system automatically gener-
ates G¢ by expanding a maximum-weight spanning
graph. This is done by first sorting edges in descend-
ing order and greedily include a pair of blocks with
maximum weight value as long as the graph remains
planar, chordless, and with maximum node degree at
most four. The weight value of an edge is defined by
the frequency of metabolites appearing in both blocks.
Once this basic skeleton is computed, users can further
edit G¢ to match their specific aims, personalizing
the network by adding or removing inter-block con-
nectivities. Metabopolis then automatically initializes
the graph using a new crossing-free layout algorithm
by default. This is done by sorting the nodes having
the same topological distance to the geodesic center
on each branch and place nodes on concentric circles
according to their distance (see Fig. 5(d)).

4.2 Constrained Floor-Plan Problem

Once we have the graph skeleton, we are ready to
place blocks based on its connectivity. In this subsec-
tion, several hard and soft constraints to place blocks
of pathway subsystems based on their connectivity or
desired positioning will be introduced to find an ap-
propriate layout in our MIP model. Mixed-integer pro-
gramming (MIP) is an optimization technique where
variables can be either integers or real numbers that
are subject to a set of constraints. The constraints
can be linear equalities or inequalities, together with
a linear objective function to be optimized. A globally
optimal solution for a MIP model can then be com-
puted using specialized MIP solvers such as CPLEX
or Gurobi. In this framework we can model hard con-
straints and soft constraints to fully or partially fulfill
aesthetic criteria for the layout, while seeking for the
best solution under the employed conditions. Initially,
we assign a rectangular area b, € Bc proportional to
the amount of reactants and products in each cate-
gory as a reserved region for drawing, so that we can
apply aesthetic criteria to compute the desired space
for enhancing pathway readability. Figure 6(a) depicts
how a block b.(7) is formulated in our system, with
two reference points (x;,y;) and (p;,¢;) referring to
its bottom-left and top-right corners respectively, to-
gether with its corresponding width W; and height H;.
To achieve our strategy to A(1), we incorporate sev-
eral hard (CH1-CH4) and soft (CS1-CS3) constraints
in MIP model, which are summarized as:
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(CH1) Block-block attachment: The two blocks
connected with an edge must be placed next
to each other.

Overlap-free block placement: The place-
ment must be overlap-free.

Pairwise relative positioning: Mutual rel-
ative positions of blocks as specified by the
graph skeleton are preserved.

Barycenter preservation: Relative posi-
tions between the barycenter of a cycle and
its end nodes are preserved.

Compact layout: The layout should be
compact.

Expected aspect ratio: The layout should
adhere to the desired aspect ratio.

Long shared boundary: Attached blocks
should have long shared boundaries.

(CH2)

(CH3)

(CH4)

(CS1)
(CS2)

(CS3)

4.2.1 Block-block attachment constraints (CH1)

This constraint allows us to attach two neighboring
blocks from the graph skeleton so that each pair of
blocks will have exactly one shared boundary in the
output, as the two blocks b.(¢) and b.(j) shown in
Fig. 6(b). The yellow dotted rectangle here indicates
the configuration space for b.(j), to represent all pos-
sibilities of placing (z;,y;) along b.(j) so that the two
blocks are in contact but do not overlap [61, 62]. This
is done by reflecting b.(i) at its reference point on
(0,0) (see Fig. 6(c)), computing the Minkowski sum
(be (1) +bc (1) = a+ bla € be(i)',b € be(j)) of two blocks
be(i) and b.(j), and computing the convex hull to ex-
tract the polyline configuration space.

For each pair of connected blocks, we decompose the
configuration space of b.(j) into multiple line segments
L(r): A+ By+C =0 (r =1,...,k) and force the
reference point (x;,y;) of b.(7) to settle on one of these
segments. For each L(r), the constraint to place (z;, y;)
on the corresponding configuration space is defined as:

(1)

apay(i,3) +ape) (@, J) + . +apgy(i,j) > 1, and

—y; < —A/B-(zi—=z;)—C/B+ (1 —oary(ij) M

-—y; = —A/B-(zi—wx;)—C/B—(1—oary)(i,j)) M

—z; < Xmaz + (1 —apy(i,3)) - M

—xz; > Xmin — (1 —apy(i,5)) - M (2)
—y; < Ymaz + (1 — apy(i,5)) - M

—y; > Ymin — (1 —apy(4,7)) - M,

where ay,,(4,7) for 7 = 1,...,k are binary variables

and M is a large constant used to automatically vali-
date and invalidate the set of the constraints to place
(z4,y;) on L(r) in the MIP model. Note that (x;,y;)
and (z;,y;) are reference points of block b.(i) and
be(j), and A, B, and C are constants precomputed
from line L(r). (Xmin, Xmaz) and (Yoin, Yimaz) indi-
cate the lower and upper bounds of each L(r) along x
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and y axes, respectively. Since M needs to be larger
than all coordinates of z; and y;, we define our M as
> ey Wi+ H;)/2. We also use k = 4 by default since
a rectangle has four boundaries.

4.2.2 Owerlap-free block placement constraints (CH2)
Generation of floor plans is a challenging task because
the layout must be overlap-free. Figure 6(d) depicts an
example of this constraint, where block b.(7) needs to
be placed outside one of the boundaries of block b.(5),
and therefore is formulated as:

and

Bleft (7;7 ]) + ﬁbottom(iv j) + Bright (iv j) + Btop(iv ]) Z 11

(3)

i+ W, < xj4+ (1= Brer(4,5)) - M

yi + Hi < x; + (1 = Brottom (4, 7)) - M (4)
zi > oz + Wi — (1= Brignt(4,5)) - M
yvi 2 oz + Hj — (1= Beop(i,4)) - M.

Note that we again introduce binary variables ((i, )
to validate and invalidate one of the four conditions,
and M is the same large value from Eq. (2) reused in

Eq. (4).

4.2.8 Pairwise relative positioning constraints (CHS3)
This relative position constraint is used to maintain
the spatial relationship between each pair of blocks,
which helps preserving the mental map from the dia-
gram created previously, as well as limiting the search
space in the model. Figure 7(a) depicts an example of
such a constraint, where the map domain is divided
into the positive side (A,x + By + C, > 0) and the
negative side (A, 2+ Bpy—+C,, < 0) and this condition
needs to be preserved after the optimization [63]. To
control this constraint, we newly introduce an angle 6
to generate two border lines L; and Lo that are used
to designate feasible region for block placement (yellow
region for b.(i) in Fig. 7(a)). Note that the constant
values A,, B,, and C,, are computed from the ini-
tial coordinates of b.(i) and b.(j), where we rotate the

normal vector of ji by the angle 6 clockwise and coun-
terclockwise. Since we define (A4,, By,) as unit normal
vector, which satisfies |4,|% +|B,|?> = 1 of lines L,, so
that we can compute the signed distance D,, between
b.(i) and L,, simply by inner product. In other words,
if the block b.(7) is located on the positive side origi-
nally then it will be forced to stay on the same side in
the computed floorplan. The constraint is formulated
if D,, > 0 or D,, <0, respectively as:

W
—x; — 1)

An(ai + 51 )+ By G —uy = D 2 Dal (5

An(@i + gt — 2 — =0 + Bu(yi + 75+ —y; — ) < —|Dal.
4.2.4 Barycenter preservation constraints (CHJ)
In most of the cases, pairwise relative positioning con-
straints will also preserve the planar embedding of the
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network, while in some extreme cases such as a small
block connected to two large ones, will break these
rules since the border lines L; and Lo are close to par-
allel. To solve this, we introduce another constraint
that restricts the barycenter of a cycle inside the cycle
after optimization (see the yellow cycle in Fig. 7(b)) to
preserve the planar embedding after optimization. The
constraint is similar to the paiwise relative positioning
constraints (CHS3), where we keep the barycenter of all
end points of a cycle retaining at the same side as their
original position (yellow region in Fig. 7(b)). Blocks i,
j, and k are three blocks composing a triangle face
F}, and the yellow point indicates their corresponding
barycenter. This constraint is thus revised from Eq. (5)
by replacing x; + Vg with Zave and y; + % with Yave,
respectively, where (Zavg, Yave) s the barycenter of the
cycle at initial position.

4.2.5 Objective function (CS1-CS3)
Beside the aforementioned hard constraints, we also
introduce several soft constraints for better usage of
screen space. Our goal here is to find a compact layout
(CS1) having expected aspect ratio (CS2) and long
shared boundaries between blocks (CS3).
[Compact layout (CS1)] is accomplished by mini-
mizing the objective function 0bjcompact = Weompact *
(B; + By), where we introduce the upper bounds B,
and B, to every blocks b.(i) by 0 < z; < B, — W, and
0<y; <B,—H,.
[Expected aspect ratio (CS2)] is done by minimiz-
ing the objective function 0bj;atio = Wratio * 9, Where §
is defined as 6 = |B; — R - B[ for the user-specified
target aspect ratio R. Our default is R = 4/3.
[Long shared boundary (CS3)] is achieved by min-
imizing the objective function 0bjoverlay = Woverlay -
Ze”eEo (Va (4, 5) + 72, 7)), where v, (i, 7) and vy (4, 5)
are displacements between pairwise block centers along
x and y axes, which are defined as

i + 5t = (25 + 22| = 72(i, ), and

i + B = (0 + 5] = w0, ). ©)

Finally, we minimize the sum of three objective terms
as follows:

objfioorplan = 0bjcompact + 0bjratio + 0bjoverlay - (7)

Note that by default, we empirically employ woverlay =
10, Weompact = 1000, and wratic = 1 for the weights in
our system.

4.3 Fine block adjustment
Once we have a compact layout for the block place-
ment, we then fine adjust the four boundaries of each
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block for better utilizing the screen space. This al-
lows us to align block boundaries to avoid bends when
routing the edges. The optimization partially includes
the aforementioned constraints in Section 4.2, together
with new constraints for this purpose. We again pre-
pare a left-bottom reference point (z;, y;) for each b. (i)
but add a right-top reference point (p;, ¢;) to facilitate
adjusting block boundaries. Our hard (CH2-FH2) and
soft (CS1-FS2) constraints are summarized as:
(CH2) Overlap-free block placement: As defined
previously.
(FH1) Minimal block width and height: The
minimum drawing area must be preserved.
(FH2) Attached boundary: Attached boundaries
must stay.
(CS1) Compact layout: As defined previously.
(CS2) Expected aspect ratio: As defined previ-
ously.
(CS3) Long shared boundary: As defined previ-
ously.
(FS1) Area maximization: Drawing area should
be maximized.
(FS2) Block aspect ratio: Aspect ratio of each
block should not be changed drastically.

4.8.1 Minimal block width and height (FH1)

Our objective is to preserve the minimal drawing space
computed from the previous step in Section 4.2 to
avoid drastic territory changes. The idea is simple since
we assign lower bounds to the width and height of each
block. To preserve the minimum block size, the con-
straints are formulated as p;,—x; > W, and ¢;—y; > H;,
where W; and H; are the width and height of the block
computed previously. Note that this is the constraint

employed to guarantee minimal drawing space of each
block b.(7).

4.3.2 Attached boundary constraints (FH2)

We also incorporate hard constraints to retain the
shared boundaries computed from the previous opti-
mization. Since we already know the shared boundary
between adjacent blocks, the idea here is simple. We
force the distance between the shared boundary to 0,
while restricting the corresponding upper bounds al-
ways locating higher than the lower bounds among the
two blocks. These constraints are added by investigat-
ing all the shared boundaries along x and y axes and
are formulated as:

pi —x; =0, qi —

y; >0, and q; —y; > 0, if |[p; —x;| =0, (8)
¢ —y; =0, pi — =0.

z; >0, and p; —x; > 0, if |g; — yj]

4.8.8 Objective function (FS1-FS2)
We again introduce several soft constraints for better
usage of screen space, including compact layout (CS1),
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expected aspect ratio (CS2), area maximization (FS1),
long attached boundary (FS2).

[Area maximization (FS1)] is achieved by min-
imizing the distance between the block boundaries
and the four boundaries of the map domain. This

objective is therefore defined as 0bjarea Warea *

Yicv (Taistr.(7) + Yaistr. (4) + Zaistu (4) + Yaiseu (1)), where

the distance to each of the boundary is defined as
Ty = Z'distL(i)7 zupper(i) —Pi = xdistU(i)v Yi = ydistL(i)7
and yupper(i) — 4i = YdistU (Z)

[Block aspect ratio (FS2)] is similar to constraint
expected aspect ratio (CS2), where we apply the idea
to each block. The objective 0bjplockratio = Whlockratio *
> _icy ki, is minimized by collecting the corresponding
distortion as k; = |p; — z; — (@ — yi)|-

Finally, we minimize all objective terms by summa-
rizing them as:

0bjadjustment = Objfloorplan + 0bJarea + 0bjblockratio- (9)

We empirically employ the same weight value for
Objﬁoorplan» and set Warea = 1000 and Wplockratio = 100
by default in our system.

5 Intra-Block Network Layout

The grid pattern is commonly chosen in urban plan-
ning even though its infrastructure cost is high, be-
cause the frequent intersections and the orthogonal
geometry of the grid pattern help pedestrians with de-
tecting orientation and selecting the path to desired
destinations [44]. This is developed by decomposing
a metropolitan area into several city blocks, and a
city block is further decomposed to multiple building
blocks to create the hierarchy of the city as shown in
Fig. 1(b). This pattern also serves the entire urban
area evenly so that it retains lower traffic congestion
than a centralized structure [15].

5.1 Hierarchical orthogonal layout

To achieve the visual hierarchy, we decompose each ur-
ban block placed previously into several building (sub-
)blocks using a TreeMap [36] to discriminate unique
patterns in each categories. We then obtain a grid-
like road network for edge routing based on this de-
composition. Within each building block, we apply a
compact orthogonal graph layout algorithm [55, 57]
to each individual pathway sub-network to create well
readable sub-drawings. The gray rectangles of the top
image in Fig. 8(a) show an example of decomposition
by TreeMap. Suppose that the orange node here is an
important metabolite connected to reactions in mul-
tiple categories and the blue nodes indicate either a
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unique or an unimportant metabolite in Vp. To re-
duce the visual complexity, we place this orange node
on the boundary of each block to emphasize its dif-
ference (see the bottom image in Fig. 8(a)), while
still showing the connectivity using the edge decom-
position scheme described in Section 3. The process
to route edges consists of two steps, including build-
ing local flow networks Gy = (Vas, Ear) and global
flow networks Gy = (Vn, En), respectively. We first
build a local flow network Gps (Section 5.2) of each
building block to find optimal flows leading to metabo-
lites on the block boundary (conjunction). Each flow
thus corresponds to one directed edge connected to
the metabolite as the red edges shown in Fig. 8(a)).
Based on these edges, we then construct global flow
networks G (Section 6.1) to distribute the flows used
to connect chemical components appearing in different
categories (see blue and yellow edges in Fig. 8(a)).

5.2 Local flow network for lane generation

Once we have computed the orthogonal layout in each
block, we are ready to arrange the nodes on the bor-
der and the edges connecting them. Our idea here is
to formulate this problem as a local flow network and
find its optimal flow paths that guide the shapes of di-
rected edges by minimizing the intersections between
the drawn orthogonal layout. The problem is solved by
seeking minimum cost maximum flow using the succes-
sive shortest path algorithm [64]. Figure 8(b) shows an
example of our local flow network, containing a source
(red circle), a sink (blue circle), and several supply
(pink circle), demand (aqua circle), and road (green
diamond) nodes v,, in V). The source and sink nodes
are mandatory for the flow network algorithm, while
we assign supply nodes to those reaction nodes con-
nected to the metabolites on the block boundary and
demand nodes to those possible candidates normally
distributed on the boundary.

Since our goal here is to create a grid network suit-
able for winding an edge to avoid intersections with the
drawn orthogonal layout, we build the network G by
sampling intermediate horizontal and vertical lines be-
tween two consecutive nodes along x and y axes. The
direction of each edge e,, € E); is further decomposed
into four as shown in Fig. 8(c) to avoid unexpected
long edges across the block. Moreover, each intermedi-
ate sample is also decomposed by adding an additional
edge with capacity one, to avoid multiple passing flows.
We complete the network construction by adding di-
rected edges from the source to supply nodes, supply
nodes to their adjacent road nodes, and demand nodes
to the sink node. Note that the orange line in Fig. 8(b)
represents a flow example from the source to the sink.
Our final task here is to assign appropriate capacities
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and weights to each edge e,, in the network. To en-
sure every supply will exactly lead to one demand on
the boundary, we assign a capacity of one to each edge
e to avoid multiple flow paths. Meanwhile, we define
the corresponding weight function w(e,,) for each edge
em = (Va, vp) as:

[cme -lj
Plva —vol + 4 enlem) (|

heH

|+1), ifem € Eu,

(10)

lem 0]

to penalize if the edge is long or has intersections with
existing orthogonal layout. Note that cj(e) counts to
one if edge e,, is intersected with any edge [} in the
orthogonal layout, while we assign smaller penalty if
the crossing angle is close to 90°.

6 Inter-Block Network Layout

Until here, the basic information of node relationship
is presented (black arrows in the result images). To
highlight the duplicated metabolites, we incorporate
additional colored edges between duplicated metabo-
lites in different urban blocks in order to present the
transaction flows between a pair of reactions sharing
the same metabolites.

6.1 Global flow network for edge routing

Again, we construct global flow networks for connect-
ing pairs of identical chemical components appearing
in different urban blocks (see blue and yellow edges in
Fig. 8(a)). This is achieved by individually building a
flow network from one block to the remaining blocks to
visualize the global connectivity from one category to
the others. The primary idea of this design is to control
the edge density on a single road, to avoid accumulated
flows by specifying a maximum flow capacity on each
edge.

Figure 8(d) shows how our global flow networks are
created. In contrast to the local network, the global
one contains one more node component, the conjunc-
tion nodes (yellow square), whose coordinates are com-
puted from the local network in Section 5.2. We con-
struct a different grid network by plotting all con-
junction nodes and corner nodes of building blocks,
to build the grid network by connecting nodes along
the building block boundaries (see the green network
in Fig. 8(d)). We then add bidirectional edges to our
network by referring to the connectivity of this green
mesh. The global network is finalized by adding di-
rected edges from the source to supply nodes, supply
nodes to the corresponding conjunction nodes, con-
junction nodes to their demand nodes, and finally the
demand nodes to the sink node.

To ensure that every supply has sufficient capacity
to connect to other blocks, we compute the capacity
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cap of each supply edge by summing the connectivity
from the source block to the other blocks, while we
assign the corresponding exact value to the demand
edges. Other edge capacities are assigned as:

capacity_from_reaction(e,,), if e, € S
_ capacity_to_reaction(en ), ife, € D

Capg(en) = MAX_CAPACITY — u(en), ife, € B (11)
0o otherwise,

where u(e) indicates the value of used capacity from
the computed networks, and S, D, and B are edges
connected to the supply, demand, and road nodes, re-
spectively. The edge weight function wy (e, (vq,vp)) is
simply defined as |v, —vp|. The MAX_CAPACITY is a
user-defined constant to limit the maximum flow on a
road. The problem is again solved by the same classic
flow algorithm [64].

7 Implementation and Enhancement

Our system has been implemented on a desktop PC
with an AMD Ryzen 7 1800X CPU (8 Cores, 16
Threads) and 64GB RAM. The source code was writ-
ten in C++ using Qt Graphics for rendering maps
and user interface, Boost Graph Library for the graph
data structure and minimum cost maximum flow algo-
rithm, CGAL for computational geometry algorithms,
and IBM CPLEX for the MIP-based optimization.
Since our framework is designed to incorporate dif-
ferent graph layout algorithms for decomposed sub-
graphs, we introduced orthogonal layout algorithms
here due to their high computational complexity and
familiarity in most of the database [3, 4]. Users are al-
lowed to choose preferable compact orthogonal layout
by selecting the open-source HOLA package [55] or the
commercial library yFiles [57] in the system, but only
HOLA is chosen for the visualization in this paper.

7.1 Supported file format

The biological relationship is often recorded using the
Systems Biology Markup Language (SBML) [65], an
extended XML file format, which we also use as the
input data format of our system. To further increase
the popularity of the proposed technique, we store our
layout using an extended Systems Biology Graphical
Notation Markup Languages (SBGNML) [66], which is
a standard visual representation of SBML. Our system
is open-source and has been put on a GitHub reposi-
tory named Metabopolis [67].

7.2 Setting of the MIP optimization

Since the space partitioning scheme in Metabopolis
is achieved by solving a MIP problem, we cannot
only control solution space, but profit from algorith-
mic speedup by solvers such as IBM CPLEX, Gurobi,
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SCIP, or Xpress. As compared to other constrained op-
timization techniques such as greedy algorithm, sim-
ulated annealing approach, or genetic algorithm, MIP
is more prominent here in the sense that it also pro-
vides the optimal solution by time, which cannot be
achieved or predicted by other heuristic approaches.
Especially in one of our use cases, where we gener-
ate high quality maps to serve as an overview map for
databases, we need a reliable approach that generates
a diagram with high readability. With modern MIP
techniques, the formulation can be also relaxed to find
a feasible, but possibly suboptimal, solution in shorter
time. Moreover, it turned out that overlap-free block
placement (CH2) constraints are bottlenecks in our
approach. We can formulate them as lazy constraints
in modern MIP solvers so they will be only included
when the result violates the constraint. This is done
together with introducing pairwise relative positioning
(CH3), to restrict the solution space in a reasonable
way.

Our constrained floor-planning algorithm relies on
an input graph skeleton for guiding block placement,
which helps preserving the mental map of users as well
as limiting the search space for the NP-hard floor-
planning problem. If all edges of the graph are re-
moved, the problem will then become conventional
floor-planning problem, which may not be sufficiently
solved using MIP solvers. We suggest users to add at
least one edge to each block for better control of the
layout.

7.3 Content-adaptive navigation

We also incorporate a content-adaptive navigation
scheme to support the layout navigation. The zoom-
levels have been categorized into three, including the
overview level, the intermediate level, and the detailed
level, where the font size and intensity are changed
accordingly. Four color schemes, including the prede-
fined, the monotone, the pastel, and the ColorBrewer
color sets, are incorporated for selection. The high
level category names (ex. names of ontology labels
or compartments) are placed at the center of each
block, while we rotate the name 90 degrees when the
block is vertically extremely long. At the intermediate
level, we also enlarge the reaction names by a factor
of 3, so that names become readable when the screen
space is sufficiently large. The font intensity of cate-
gory names is decreased as the zoom level increase,
while the names of metabolites and reactions change
contrarily. Metabopolis also includes traditional inter-
actions such as highlighting reactions and metabolites,
as well as corresponding neighbors.
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8 Experimental Results, Evaluation, and

Discussion
The Metabopolis diagram representing the major cat-
egories of the human metabolic network is shown in
Fig. 2. The red route in Glycolysis Gluconeogenesis
(orange block) shows the cytoplasmatic oxidation of
glucose to produce ATP. Using our diagram (each
category is represented by a different color), we im-
mediately observe that the entire process only hap-
pens in Glycolysis Gluconeogenesis since all positions
of the corresponding reactions are constrained within
one block. However, the produced ATP is placed on
the boundary of the block here, which means that it
also serves as reactant of other reactions outside the
Glycolysis Gluconeogenesis. In biology, ATP is the key
energy molecule utilized to drive other biological reac-
tions. The green route shows an example of ATP con-
version in the cytoplasm to enable urea synthesis (the
blue route). Compared to Glycolysis Gluconeogenesis,
reactions involved in urea synthesis are more compli-
cated, since they require to bring ammonia from mito-
chondria to the cytoplasm to complete the synthesis.
This is visualized by showing the reactions involved
actually belong to Urea Cycle, Alanine and Aspartate
Metabolism, and Transport pathways in our diagram.

Figure 9 is an example of reproducing the KEGG
overview pathway map of human metabolic pathways,
and the diagram is fully computed using Metabopolis
without manual adjustment. Metabopolis allows us to
automatically duplicate the nodes by setting an exper-
imental threshold 80 to the frequency of inter-category
edges. This result is similar to the original KEGG
map [68], since blocks with warm and cool colors are
grouped together as originally designed. In addition to
the automatic layout computation, Metabopolis also
supports several user interactions. This allows users
to assign strongly connected blocks as neighboring
blocks, highlight connected reactions or metabolites,
and relationships between reactions and metabolites.
Figure 10 shows the result, where we parsed the graph
data and assigned the block position by referring to the
category position from the metabolic pathway diagram
of KEGG [68]. We also borrow the color coding from
KEGG and assign the initial block center by calculat-
ing the average of nodes involved in the same semantic
categories.

Figure 11 shows the same human metabolic network
ReconMap [4, 69]. To the best of our knowledge, this
is the first automatically generated pathway diagram
that shows the entire human metabolic network in a
clear, orthogonal, and hierarchically structured fash-
ion.

Since pathway diagrams provide a way to under-
stand fundamental metabolisms and the responses
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of diseases to drugs, researchers increasingly pursue
network-centric approaches to investigate the func-
tionality and controllability of pathways. There are
two typical pathway categories: small pathway maps
(e.g., citric acid cycle) often summarize a set of core
chemical reactions and large pathway maps (e.g., hu-
man metabolic pathways), which collect extensive pro-
cesses among one species. The former pathways such
as Fig. 2 are often used to describe a specific biochem-
ical theme and the latter such as Figs. 9 and 11 are
commonly referred to imagine how the functions of a
metabolite would influence the entire metabolism. At-
tributes of chemical components and reactions, such as
cell compartments (organelles) and biological pathway
ontology (the standard identifiers), allow researchers
to share the corresponding knowledge by querying for
categories of interest [70].

Table 1 summarizes the size of the metabolic net-
works visualized in this paper, where |V|, |E|, and
density (Den) correspond to node number, edge num-
ber, and density before node duplication, respectively.
Similarly, |Vp|, |Ep|, and density (Denp) are the
respective values after node duplication. The edge
density function for Den and Denp is defined as
|E|/(|V]?> = |V]) [33] in Table 1. Note that here we de-
compose a hyperedge of a reaction into multiple edge
segments used to connect metabolites to construct our
network. The duplication allows us to reduce graph
density to untangle edge crossing in the visualization.

Table 1 The number of nodes (|V'|), edges (| E|), and density
(Den) before and after node duplication, while |C| shows the
number of categories of our sample images.

Before duplication/After duplication

V1/TVD] [ET/IED] Den/Denp |C|
Fig. 2 593/948 1244/1635 | 0.354%/0.182% | 11
Fig. 10- 9 3679/5954 4008/4010 0.030%,/0.011% | 13
Fig. 11 12503/22860 | 31540/42007 | 0.020%/0.008% 100

Table 2 presents the computation times of the figures
shown in this paper. Although it still takes a few hours
to compute the entire human metabolic network, our
approach provides the first computational tool to gen-
erate pathway maps of that size automatically rather
than in months of tedious manual work. In addition,
we also visually compare the results generated using
Prefuse Force-Directed Layout [25], Compound Spring
Embedder Layout (CoSE) [71], and Metabopolis in Ap-
pendix A.

For validating our approach we reached out to do-
main experts who manually create pathways in their
daily research and interviewed them after they investi-
gated several maps generated using Metabopolis. This
includes one of our co-authors, Dr. Filipa L. Sousa,
one member from ReconMap [4], three members from
KEGG 3], and one member from CellDesigner [22].
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Table 2 Computation times of each algorithmic step of the
sample images (in seconds).

floorplan | adjustment | orthogonal | local flow| global flow
(Sec 4.2) | (Sec 4.3) (Sec 5.1) (Sec 5.2) | (Sec 6.1)
Fig. 2 0.94 0.62 0.06 0.03 5.54
Fig. 10 10.65 0.62 33.17 0.75 60.01
Fig. 9 11.14 0.88 33.08 0.78 61.15
Fig. 11 5630 643 193.15 191.44 1634

Dr. Sousa mentioned that compared to conventional
network visualization such as the overview map from
KEGG pathway maps [3] and a force-directed layout
from Cytoscape [25]), one has to get used to the lay-
out of Metabopolis initially. Then, it becomes easier to
adapt to the proposed layout and visualization rules
since it restricts the positions of categories. It is also
an advantage to select categories and arrange adjacent
categories to personalize the pathway maps. Regarding
the design principles, grouping of pathways within the
same category is a good option to emphasize chem-
ical components in the same categories. For a larger
map, since each reaction is represented in its full form,
node duplication is helpful while some maps might be-
come too confusing. An automatic scheme by cloning
commonly duplicated metabolites from the manually-
created maps is good so that it is not infeasible both
from the biological and from the layout side. One may
need to learn the decomposition scheme of long di-
rected edges, while it is understandable through expe-
rience. The background line-set feature, which uses line
width to represent the number of reactions a metabo-
lite is involved in, provides a good visual guidance
to which metabolite has the strongest connectivity to
other metabolites when visualizing a certain compart-
ment/category of reactions in detail. Nonetheless, if
someone is not familiar with the nomenclature com-
monly used in metabolic networks, visually searching
reactants and products of a reaction on a pathway
map is impractical compared to name query. However,
once the right metabolite is chosen, it becomes intu-
itive to read the connectivity and the belonging cate-
gory through Metabopolis. Color-coded bundled edges
is not intuitive if the map is large, while together with
color highlighting it is clearer.

Dr. Ronan Fleming from ReconMap [4] has initiated
the project for manually drawing human metabolic
pathways in a full form to support comprehensive
understanding of the network content together with
omics data and simulation results. He expressed his
great interest to Metabopolis since he did not receive
more than one feedback from the Graph Drawing Con-
test 2017 [14] and considered our technique the first
automatic approach targeting this large network. He
confirmed that this first work opens new opportunities
in the bioinformatics community. Since Dr. Fleming’s
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team has used CellDesigner [22] for manually gener-
ating pathway layout, we also interviewed Dr. Akira
Funahashi, the corresponding author of CellDesigner.
Dr. Funahashi is impressed by the layout controllabil-
ity of the maps generated by Metabopolis, while he
suggests to fully control the sub-patterns to make the
maps easier to memorize and relax the shapes of rect-
angles to create distinct block structures. Dr. Minoru
Kanehisa and his team members have been working
on manually creating pathway maps for KEGG path-
way database [3] for 20 years because they believe the
quality of hand-crafted pathway maps is better. With
our technique, they see the potential to automatically
arrange reactions in the same organelle closer to each
other and provide readers with an opportunity to learn
pathways in a top-down fashion.

Although all domain experts agree that the manu-
ally adjusted layout still performs better in terms of
visual quality (e.g., preserving citric acid cycle as a
circle in the drawing), they have inspected our auto-
matically generated diagrams with great interest and
forsee its future potential. We were recommended to
include the layout algorithm in conventional software
packages, so that both biologists and bioinformatics
community can connect our layout to existing biolog-
ical databases, and to incorporate search functions to
facilitate sophisticated pathway analysis, including re-
trieving additional information regarding genes, cat-
alyzing reactions and other biological information such
as KOs, COGs, etc. Advanced editing is also advised
to revise the datasets. After the discussion, we have
improved the display of all nine combinations of di-
rectional /bidirectional edges shown in Fig. 4(b), by
generating one line between pairs of chemical compo-
nents and thus producing a dense line drawing when
the diagram is large. We then bundle these lines to
a certain width, while allowing users to highlight and
extend their target of interests through our user inter-
face, or click on the chemical component to see how it
is distributed as the conventional hand-drawn pathway
maps provided.

9 Conclusion and Future Work

This paper presents the very first approach to auto-
matically design biological pathway diagrams in ur-
ban map style by integrating a constrained floor-plan
technique together with a visual hierarchical represen-
tation using a network flow algorithm for edge rout-
ing. Our approach ensures the appropriate partitioned
space for categories with biological meanings, while
seeking the balance between size of categories and
neighborhood relationship. This has been done by for-
mulating the problem as a mixed integer program-
ming model. We devise a visual hierarchical design for
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metabolites by borrowing the concept of urban maps,
where we reasonably bind the line sets connecting to
identical metabolites to restricted roads bounded by
categories. The paths have been distributed by flow-
network algorithms. An interface for editing, navigat-
ing and highlighting target metabolites is also provided
for further customization.

Metabopolis is the first work aiming at automatic
generation of entire large metabolic pathways, thus we
open a myriad of opportunities for a domain where
there were only few and mostly non-customized man-
ually designed maps until now. Future work will in-
volve the creation of a visual web repository, where
biologists can continuously add or create their maps
together with sharing the maps with the rest of the
community. Everyone is welcomed to contribute to the
knowledge collection and suggest preferable visual rep-
resentations since the layout is expected to be created
associated with preferred tasks. We will allow users to
create and update the diagram with domain-specific
information so that we can automatically transform
this knowledge to mathematical equations for the lay-
out optimization. To achieve this, we have been in col-
laboration with CellDesigner [22] on plugin develop-
ment, and plan to release packages for other popular
tools such as Cytoscape [25] to initiate the dynamic
pathway layout framework in the biology community.
We have released our initial system on GitHub [67],
a tutorial (Appendix B), and will complete the entire
framework by coupling with a version control system
for pathway diagrams. Another goal is to reach out to
the structural biology community by integrating the
pathway diagrams with structural data of the chemi-
cal components. By extending the rectangular blocks,
we target more complex geometry for representing the
context of the chemical components such as cell com-
partments, cell types, or organs.
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Figures

Additional Files

Additional file 1 — Appendices

In Appendices, we first compare and describe the experimental results
generated using conventional layout algorithms and our approach.
Afterward, a tutorial of Metabopolis has been included to explain the usage
of the software.
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Figure 2 An example of major pathways in human metabolism, including eleven categories highlighted in differently colored blocks.
The red route indicates a path for cytoplasmatic oxidation of glucose in cytoplasm in order to obtain ATP (energy), and the blue
route shows how humans transform ammonia to urea to eliminate the toxic ammonia in the Urea Cycle. Our visualization shows
that the first procedure only occurs in Glycolysis Gluconeogenesis (orange block) locally, while the chemical components globally
move across multiple categories (e.g., mitochondria to cytoplasm through the transport pathways) in the second process. The green
route further highlights how the energy generated from the glucose oxidation comes to support catalyzing the urea synthesis. Users
can simultaneously read the local and global information using the diagram generated by our system.
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Figure 5 Examples of building our graph skeleton, including
(a) a K4 graph, (b) a chordless graph, (c) a degree 4 star
graph, and (d) an appropriate order for initial crossing-free

layout.
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Figure 6 lllustrations of our mathematical constraints,
including (a) block representation using Chebyshev distance,
(b) alignment of blocks along boundaries, (c) configuration
space by Minkowski sum, and (d) overlap free condition.
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Figure 7 lllustrations of relative positioning constraints,

including (a) preservation of spatial relationship and (b)
barycenter of a triangle face.
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Figure 9 Redrawing the human metabolic pathway map of KEGG [68] by using Metabopolis. Blocks with warm colors are grouped
to the right and cool colors are grouped to the left as originally designed in the KEGG overview map.
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categories defined in the KEGG overview pathway map [68].




Wu et al.

Page 20 of 20

b ] i=]

[ FEEEEIE

]

==

L]

|

|

Egaufis JoiadhifiAgeu

I

|

upiresyiKoap e [ —
; i Bt
= 7 i
SRS ’ [0
- 3 L [
& 2 Tlier
ERisiill lim I
7] : Mﬁ % i
=i = - ::»:
N Pl iR o
S Rt o, i e
gl T [ o A
3 : £ i S3E )il
] 3 EEE i SRR
E =3 3l i
3 L 1 [ :
3 EE 1 2
SO LT Ry REEN - mns
RE1 e S it i =
IU -i =] m - L1 54
Lmﬁ . i 1=E
L) (L | i
; ””':Hﬂ .%fl‘l il o
o (S == I 0 = I
L3 Sy S Lé ‘
L8 T 114 ;
[ iz Eh il =
WE e
i % " - WF WE?E %‘ 2“” I -Eftz
1t [ [ L1 BB it SEGBEE 1
I % e . i i;
ERAZEEE v Hess [
Sl el ' |
L 1M “
=
5 F - = =
s ] il = L
e =6 |
= 8 i 0n
L ol == |
B - == Wiignn:
Y LI ! 177
: g U e a1 52 RS S
AT AT L I ; Honetnng |- =
I Ul \::%“ SR Cg
= IR e g T
) - Uil 33 i T‘%J{m
3 LAl 00 = ‘WLU - 0H TEdT
STmsss 0 npugef
:]1 } i PERE %ﬁ ‘Etjg:ij A
[T [ O A T = |
| ] O D= T =
(WL L T Tl [T ]
(i su=pur-ogny ]
= == = i i J T ET g T
£l JeLd ] S L]
| i Ercl e
A ERRA
aannaniing I l L] Ik HH 5
it e 5 illpzsisis =
i X il gl e JAig
EE PRLilildile: BHLH
e { L A :
] LL 2
I e
L % 3] il 5
| MR R :
F SATO= ]
QLJ - J LI
I\tﬁ i”n;‘ i i ]
i I T e e I

Figure 11 Human metabolism reconstructed from the Recon project [4, 5].




