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A B S T R A C T

Biological networks describe complex relationships in biological systems, which represent biological entities as
vertices and their underlying connectivity as edges. Ideally, for a complete analysis of such systems, domain
experts need to visually integrate multiple sources of heterogeneous data, and visually, as well as numerically,
probe said data in order to explore or validate (mechanistic) hypotheses. Such visual analyses require the
coming together of biological domain experts, bioinformaticians, as well as network scientists to create useful
visualization tools. Owing to the underlying graph data becoming ever larger and more complex, the visual
representation of such biological networks has become challenging in its own right. This introduction and
survey aims to describe the current state of biological network visualization in order to identify scientific
gaps for visualization experts, network scientists, bioinformaticians, and domain experts, such as biologists, or
biochemists, alike. Specifically, we revisit the classic visualization pipeline, upon which we base this paper’s
taxonomy and structure, which in turn forms the basis of our literature classification. This pipeline describes
the process of visualizing data, starting with the raw data itself, through the construction of data tables, to
the actual creation of visual structures and views, as a function of task-driven user interaction. Literature was
systematically surveyed using API-driven querying where possible, and the collected papers were manually read
and categorized based on the identified sub-components of this visualization pipeline’s individual steps. From
this survey, we highlight a number of exemplary visualization tools from multiple biological sub-domains in
order to explore how they adapt these discussed techniques and why. Additionally, this taxonomic classification
of the collected set of papers allows us to identify existing gaps in biological network visualization practices. We
finally conclude this report with a list of open challenges and potential research directions. Examples of such
gaps include (i) the overabundance of visualization tools using schematic or straight-line node-link diagrams,
despite the availability of powerful alternatives, or (ii) the lack of visualization tools that also integrate more
advanced network analysis techniques beyond basic graph descriptive statistics.
1. Introduction

Molecular and Systems Biology attempts to understand the com-
plex mechanistic underpinnings of biological systems by interactively
modeling and predicting a system of interest, and finally verifying
said model experimentally [1]. These systems are complex, large, and
composed of numerous types of interconnected biochemical entities,
such as genes, different types of RNA, proteins, or metabolic interme-
diaries. Commonly, such systems are represented as a graph, in which
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each biomolecule forms a vertex, and edges represent some form of
interaction between two or more such entities [2]. These interactions
can represent many different types of relationships depending on the
network in question, such as an evolutionary link between two genes
in a phylogenetic tree, functional (regulatory) relationships between
genes, or a protein–metabolite-reaction that forms a new metabolic
intermediate [3].
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These networks are often best understood as an abstract represen-
ation of the community’s current state of knowledge about a system
f interest [4]. More specifically, these knowledge graphs represent

the accumulated known and putative relationships between certain
entities. As such, these graphs are frequently produced by combining
existing knowledge with newly acquired experimental data to interac-
tively explore, form, and verify scientific hypotheses. Here, the specific
pplication areas of such visual analyses of biological networks are

varied, ranging from (i) studying the genetic basis of phenotypic varia-
tion based on differential gene (co-)expression, through (ii) biomarker
discovery for early disease risk classification using metabolomics, to
(iii) predicting a protein’s function based on its interactions with other
proteins [5].

Owing to both technical and numerical limitations, early research
fforts focused on individual entities, or small subsets of linked entities,

to understand specific relationships between them, such as the role
of one particular protein in signal transduction [6] (Section 8.1.2)
r the development of (by today’s standard) small gene regulatory
etwork maps of 40 genes [7] (Section 8.1.1). Modern research, on
he other hand, aided by the development of high-throughput data ac-
uisition techniques and the availability of increasingly large libraries
f previously collected data, enable a holistic understanding of these
iochemical networks [8]. The scale of these networks has increased

in terms of the number of entities under study, and also in terms
f modeling multiple interconnected biochemical networks simultane-
usly (Section 8.1.4), sometimes described as a ‘‘network of networks’’,
.e. the interlacing of multiple inhomogeneous networks into a single

larger network [9]. While beyond the scope of this survey, others go
even further than just integrating multiple types of biochemical sys-
tems, by seeking to additionally model non-molecular networks. These
so-called ‘‘network medicine’’ systems are multilevel ‘‘interactome’’
networks that combine multiple omics networks with, for example,
phenotypic similarity or social networks, to better understand and
predict disease risk [10].

Earlier biochemical networks, owing to their simpler nature and
maller size, lent themselves more readily to ‘‘automated’’ quantitative

analysis. However, owing to the dimensionality and heterogeneity of
odern biological network data, such purely quantitative analyses may
o longer be possible, or desirable, without an (exploratory) human-in-
he-loop visualization. This could involve inspecting particular subparts
f the network under study, gaining a big-picture understanding of
he network’s topology, guiding the quantitative analysis, or even
erforming an exploratory analysis in lieu of a traditional (statistical)
ne [11].

Yet, for such human interaction to be effective, the visual represen-
ation of the data must be carefully considered. Here, many different

visual representations of networks exist and are discussed in litera-
ure [2], each of which may be appropriate depending on the type(s)

of network(s) under study, the network’s dimensionality, as well as
the study’s analytical goals. Consider, for example, on the one hand,
 simple (force-directed) planar graph layout, i.e. circles representing
odes connected by straight line segments representing edges between.

Such representations are intuitive to read and straightforward to
mplement [12], but scale poorly with increasing numbers of entities,

relationships, and layers [13]; only to produce what is often referred
o as a ‘‘hairball’’ [2,14]. On the other hand, a more abstract approach

such as Yoghourdjian et al.’s [15] Graph Thumbnails, ‘‘icon-like’’ sum-
mary visualizations of a network’s higher-level topological structure,
may allow for a concise and readable high-level representation of even
large networks, but do not allow for any straight-forward inspection
of individual entities or relationships within such networks. The key
challenge lies in finding a trade-off between meaningfully represent-
ing the data — or at least the key quantities of interest — while
ensuring the data and its context are presented clearly enough to
avoid overwhelming the user [8]. However, sensible representations
2 
of high-dimensional data are only one aspect of making such net-
works understandable. The second, and often underappreciated [16],
component to assist in making such visualizations readable is the use
of effective interaction techniques [11]. This ‘‘dialogue’’ between the
user and system is necessary to enable both the effective confirmation
of expectations as well as the discovery of novel insight from the
data [17]. This back-and-forth between the system and the user is not
ust a matter of providing effective modes of interaction. While a com-
lete automated quantitative analysis may not be desirable, using such
uantitative analysis techniques is invaluable in assisting users to better
xplore the network under study, as well as refine and validate their
xperimental hypotheses. In summary, the interactive visualization of

biological networks is important, but also incredibly challenging as it
sits at the intersection of visualization, graph theory, network analysis,
bioinformatics, and biology itself.

Several surveys have been published over the years, from discus-
sions of the data themselves, through the analysis of graph data, to
the effective visualization of networks. Examples of published surveys,
relating both directly and indirectly to the analysis and visualization
of biological networks specifically, include (i) a compilation of a list of
(now dated) biological visualization tools and their functionality [3],
(ii) an overview of the requirements of, and layouts useful to, biological
network visualization [18], (iii) a state-of-the-art report on multivariate
raph visualization and analysis tasks associated therewith [19], (iv)
urveys on the visualization of group structure in graphs [20,21] (v) the
evelopment of a general taxonomy to describe the tasks performed in

biological pathway visualization [22], (vi) a discussion of taxonomies
to categorize methods of interaction [16], (vii) a break-down of graph
theory to assist domain experts in understanding graph data structures
nd algorithms [2,23], (viii) the identification of a number of popular
etwork visualization tools to compare their applicability to high-
imensional data [24], and most recently (ix) Filipov et al.’s [25]

compilation and unification of graph task taxonomies. We note, how-
ever, that no survey or report aims to unify all these individual domains
in order to provide a more holistic view of the challenges of biological
network visualization.

In this introduction and survey, we build upon this extensive body
of literature and extend the preliminary work of Wu et al. [26].
Specifically, while individual review papers have been published that
tackle, for example, the topics of graph theory, graph analysis, or
(interactive) graph visualization individually, there exists no review
hat provides an introductory overview to all these topics with a focus
n visualization applications in the biological/biochemical/biomedical
omains. In this survey, aimed at bioinformaticians, network scientists,
nd visualization experts alike, we concretely aim to

1. Provide an introduction to the many facets of (biological) net-
work visualization; from graph models (Section 2), through the
topics common in network analysis (Section 4), to various visu-
alization approaches (Section 5)

2. Examine the current state and role of visualization in the visu-
alization pipeline of biological networks. Specifically, we aim
to highlight gaps between visual tools employed in domain-
specific applications and the state-of-the-art developments in
visualization literature. We note seven gaps in the literature,
namely

(a) the overabundance of schematic (Section 5.4) and straight-
line node-link diagrams (Section 5.1, despite the existence
of several powerful alternatives (Section 5),

(b) the surprising lack of uncertainty visualization in biolog-
ical networks, despite its presence in both experimental
data, and reference networks and knowledge graphs,

(c) the lack of network analysis techniques (Section 4) that
go beyond basic descriptive measures with which to rank
nodes based on topological importance,



H. Ehlers et al. Computers & Graphics 126 (2025) 104115 
Fig. 1. The biological network visualization pipelines (extended from Card et al. [33])
together with the classes of our taxonomy. This pipeline consists of six elements, namely
raw data, which are processed to form data tables, which in turn are processed to form
visual structures, which produce actual visual views. All these individual elements are
connected by Task-driven Interaction techniques. To support the target domain, our
report groups the elements into 6 classes, namely (i) Graph Models, which describe the
structure of the raw data fed into the pipeline, (ii) Graph Analysis, which summarizes
or provides additional insight into the raw graph data to facilitate more effective
visualization or insight generation, (iii) Network Visualization, which transforms either
the data tables or raw data into a structure suitable to visualization, (iv) Graph Tasks,
which determine the tasks necessary for the analysis at had, as well as (v) how to best
design modes of Interaction, with which to achieve the analysis’ goals, and, finally,
(vi) Applications, which motivate and inform every aspect of the pipeline. While all
these classes are discussed in their corresponding sections, only four of these form the
basis of our taxonomy (Fig. 2), namely those highlighted in color, i.e. Graph Analysis,
Network Visualization, Graph Tasks, and the various Applications. The six identified
challenges are highlighted in dark gray circles: 1. Network Layouts, 2. Uncertainty,
3. Quantitative Analyses, 4. Graph Comparison, 5. Provenance and Trust, and finally
6. Dynamic Network Visualization. Each challenge’s arrows indicate which part of the
visualization pipeline they affect.

(d) the lack of meaningful network visualization tools for the
comparison of biological (sub)networks,

(e) the overabundance of visualization tools for exploratory
analysis and hypothesis generation, but not hypothesis
verification,

(f) the lack of provenance and user trust tracking, and
(g) the lacking availability of dynamic biological network

visualization and analysis tools, despite its growing im-
portance across many application domains.

3. Provide an up-to-date overview of the current visualization tools
available to different biological domains (Section 8). To our
knowledge, the last such compilations are now over ten years
old [3]. Hence, an up-to-date list should be useful to both the
domain and visualization communities.

2. A taxonomy for biological network visualization

The analysis methods and visualization of biological networks are
non-trivial, as (i) each (sub-)domain brings with it unique goals, tasks,
and challenges [27], (ii) the process of knowledge generation is seldom
linear owing to users’ simultaneous interactive generation and verifica-
tion of hypotheses [28], and (iii) individual technical steps, from the
selected graph layout algorithms to the analysis techniques employed,
can influence the effectiveness of the (interactive) visualization [29].
As such, systematically collecting and categorizing literature on such a
broad topic is non-trivial as well. Various models have been put forward
over the years to capture this complex process of (visually) generating
knowledge from data interactively, especially within the context of
visual analytics [30–32]. We instead adapt the comparatively simpler
Information Visualization Pipeline presented by Card et al. [33], for our
own taxonomy (Fig. 1), as (i) it relates to visualization specifically, and
(ii) it intuitively forms a suitable basis for a linear report such as this,
as well as its taxonomy.

This pipeline linearly arranges visualization into four stages, namely
raw data, which is processed to form data tables, which is processed to
3 
Table 1
Table representing the literature search and sources.

Search Domain Sources

Visualization IEEE TVCG, CGF, IEEE VIS,
EG EuroVis, IEEE PacificVis, GD, EG VCBM

Bioinformatics Bioinformatics, PLOS Computational Biol-
ogy, Briefings in Bioinformatics, BMC Bioin-
formatics,
Frontiers

Digital Libraries IEEE Xplore, Wiley DL, EG DL, ACM DL,
PubMed DL

form visual structures (i.e., a combination of spatial substrates, marks,
and graphical properties), which produces actual visual views, con-
nected by Task-driven Interaction techniques (Fig. 1) [28]. In essence,
the pipeline dichotomizes the visualization process into data and vi-
sual components, with an explicit emphasis on the importance of
(task-driven) interaction, which aims to complete tasks based on their
priority at every step along the way [32]. We adopt the pipeline from
Card et al. [33] as the basis and introduce six classes for a better
arrangement of analysis strategy in the domain. The six classes include
(i) Graph Models which describes the structure of the raw data fed
into the pipeline, (ii) Graph Analysis which summarizes or provides
additional insight into the raw graph data to facilitate more effective
visualization or interaction, (iii) Network Visualization which transforms
either the data tables or raw data into a structure more amenable
to visualization, subsequently presented in one or more views, (iv)
Analysis Tasks which determine the tasks necessary for the analysis at
had, as well as what modes of Interaction are provided to achieve those
analytical tasks, and (v) Applications which motivate and inform every
aspect of the pipeline.

We discuss each of these taxonomic classes in order to provide an
overview of core concepts, methodologies, and papers.

We systematically collected and then filtered papers in a step-by-
step fashion.

Table 1 depicts an overview of publication resources we investi-
gated using API-driven queries (where possible) Appendix. To constrain
the focus of this report to visualization examples actually relevant to
Card et al.’s [33] visualization pipeline, we only adopt full papers that
are also relevant in this context. More specifically, we curated a final set
of 83 papers (Fig. 2 as follows: (i) an initial list of over 700 papers was
collected using API-querying, (ii) additional publications were manu-
ally collected from additional sources, (iii) papers were manually re-
fined, only keeping those that featured visualization as a primary focus,
and, finally, (iv) this trimmed set of publications was then categorized
based on our developed information-visualization-pipeline-motivated
taxonomy (Fig. 1).

3. Graph models in biological networks

Complex relationships are often formulated using a network (often
associated with various attributes) in applied areas, while a graph
is a data structure expressing the fundamental connections between
entities in mathematical terms [10,26]. In such a formulation, the
vertices would represent biological entities, such as genes, proteins,
or metabolites, and the edges connecting them would describe (func-
tional) relationships between them. These formulations can include
multiple types of vertices, (hierarchical) clusters or groupings of ver-
tices, and different types of relationships [34,35]. In addition to the
topological data themselves, data attributes, can be attached to provide
extra information on certain aspects of the network, such as vertices,
groupings, or edges.

In this section, we follow common strategies to use graphs to
express the topological structure of networks discussed in the collected
literature. The formal definition of a basic graph is defined as (i)
simple graphs, and its variant specialized for biological networks is
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Fig. 2. Classification of the collected and filtered 83 papers along the 𝑥-axis into the four taxonomy classes, i.e. (i) graph analysis techniques, (ii) network visualization approaches, (iii)
raph analysis tasks, and (iv) application domains, which form the y-axis’ four facets. Each of these categories, and subsequently their 𝑦-axis, is broken up further into the various
ubcategories that make up each of their sections, and ordered by their sub-categories’ totals. Papers are clustered along the 𝑥-axis according to their targeted application areas,
arked in alternating bands of gray and white. Totals of each sub-classification are shown as a bar chart on the right.
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defined as (ii) substrate graphs. More sophisticated graphs, including
(iii) k-partite graphs, and (iv) hypergraphs, provide specific properties to
the relationships. (v) reaction graphs simplify bipartite information to
focus relationships of reactions. Finally, (vi) clustered graphs and (vii)
multilayer graphs introduce simple and nested grouping information of
the graphs.

3.1. Simple graph

A complex relationship is often formulated as a graph to be ma-
ipulated mathematically [36]. The underlying graph data structure

facilitates access to the data [37] so that analysis and visualization
algorithms can perform efficiently.

Definition: The simplest graph model can be described as a tuple
𝐺 = (𝑉 , 𝐸), consisting of a set of vertices 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛}
representing individual entities. Their mutual connectivity is
represented by the edges 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑚} ⊆ 𝑉 × 𝑉 .

This is a common definition that allows us to describe the fun-
damental relationships between entities for analysis and visualization
purposes [38–40]. A simple graph such as this can be shown as a linked
list or an adjacency matrix [2], or some hybrid format. They are often
interchangeably used for different task purposes.

3.2. Substrate graph

Although the general definition of a substrate graph/network could
refer to its underlying physical infrastructure, in biology, a substrate
graph refers to a system of interconnected biochemical reactions. The
substrate graph is one of the pioneering graph structures that has
been used in the early development of biological pathway analysis and
isualization [36,41]. Examples can be found later in Figs. 11 and 13.

Definition: A substrate graph is structurally equal to the simple graph
introduced previously. Nonetheless, since enzymes binding with
chemical reactants are called substrates (denoted 𝑚𝑖 in Fig. 3(a)),
each 𝑣 ∈ 𝑉 in a substrate graph can represent a single reactant
4 
(e.g., metabolites in pathways) or multiple reactants together
with enzymes as a single vertex. Each 𝑒 ∈ 𝐸 in a substrate
graph can describe a reaction between the substrates, indicate
a regulatory interaction, or present a movement of substrates
across cellular compartments (e.g., transport pathways).

Since a substrate graph is a simple graph with different definitions
in vertices and edges, topologically, it is straightforward to implement
and maintain a substrate graph as many known algorithms can be easily
applied.

3.3. 𝐾-Partite graph

A 𝑘-partite graph is a graph whose vertices are partitioned into 𝑘
ifferent disjoint sets. Bipartite graphs are specific types of 𝑘-partite
raphs, where 𝑘 = 2, and are common representations for biologi-
al pathways. Some biological pathways are formulated as bipartite
raph [42], where, for example, a vertex can be either categorized as a

metabolite vertex (𝑚𝑖) or a reaction vertex (𝑅𝑖), but not both as shown
in Fig. 3(b). Examples can be found later in Figs. 15 and 14.

Definition: A graph 𝐺 = (𝑉 , 𝐸) is 𝑘-partite if and only if there exists
a vertex partition 𝑉 = 𝑃1 ∪ 𝑃2 ∪ ⋯ ∪ 𝑃𝑘 and 𝑃𝑚 ∩ 𝑃𝑛 = ∅ for
any 𝑚 ≠ 𝑛. Furthermore, for each edge 𝑒 = (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 we have
𝑣𝑖 ∈ 𝑃𝑚, 𝑣𝑗 ∈ 𝑃𝑛, and 𝑚 ≠ 𝑛, which guarantees that the end
vertices of an edge do not belong to the same vertex set.

A 𝑘-partite graph (often a bipartite graph in the context of a bi-
ological network) allows us to highlight groups vertices using colors
or positions in visualization since they are disjoint. This facilitates
matching and comparison in the analysis.

3.4. Hypergraph

In principle, a hypergraph is a more intuitive and direct representa-
tion of biological pathways, and several biological network notations,
uch as SBML [43], BioPax [44], and KGML [41] support it. A hyper-

edge in a hypergraph can refer to a single biochemical reaction, in
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Fig. 3. Graph models that are commonly incorporated in biological as well as general
network analysis, i.e. (a) simple or substrate graphs, (b) bipartite graphs, (c) hypergraphs,
(d) reaction graphs, (e) clustered graphs, and (f) multilayer graphs. Across all graphs, with
the exception of (f), 𝑉 = {𝑚1 , 𝑚2 , 𝑚3 , 𝑚4 , 𝑚5 , 𝑚6} which can be placed in one of three
groups {𝑅1 , 𝑅2 , 𝑅3}.

which multiple metabolites are involved (Fig. 3(c)). Although hyper-
graphs can be converted into bipartite graphs, and vice-versa, due to
the difficulty of data management, only a few tools support hypergraph
representations [36].

Definition: A hypergraph 𝐺 = (𝑉 , 𝐸) consists of a set 𝑉 of vertices,
and a set 𝐸 of hyperedges, which are non-empty subsets of 𝑉 .
Formally, 𝐸 ⊂ 2𝑉 is a subset of the power set of 𝑉 .

The advantage of hypergraphs is that hyperedges can model k-ary
relationships, while classical graphs can only model binary relation-
ships. For example, users can spot what enzymes are involved in a
reaction by observing a hyperedge connecting all of them. Most formats
of biological networks record necessary information for building a
hypergraph. However, an implementation of hypergraphs and analysis
on a hypergraph are not as intuitive as other data structures.

3.5. Reaction graph

A reaction graph is a simple graph, structurally, but has different
semantics in comparison to a substrate graph. Vertices here are distinct
5 
reactions, and the edges are metabolites represented in the network (see
Fig. 3(d)). Reaction graphs have been used in computational models in
early research efforts [45].

Definition: Vertices 𝑣 ∈ 𝑉 in a reaction graph 𝐺 represent reactions in
biological networks, edges 𝑒 ∈ 𝐸 stand for metabolites involved.

A reaction graph is predominantly used for topological analysis,
such as shortest path analysis or centrality analysis so that users can
rank graphs according to important concepts in the field [46].

3.6. Clustered graph

In addition to simple relationships, functional groups or categories
can be assigned to vertices or edges. Such groups are often categorized
hierarchically by domain experts or analysis approaches [42]. An ex-
ample can be found later in Fig. 14, while the color boxes show the
grouping information.

Definition: A clustered graph (Fig. 3(e)) is a simple graph 𝐺 with
additional grouping information. Each 𝑣 ∈ 𝑉 in a clustered
graph belongs to one or more clusters 𝑐 ∈ 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑘}.

In other words, clusters can also form a hierarchy using a cluster
tree 𝑇 , whose leaf set is 𝑉 and inner vertices are clusters of all leaves
in the subtree. In some definitions of clustered graphs, all clusters
in 𝐶 are disjoint and form a partition of the vertex set 𝑉 [47,48].
Nonetheless, in the context of biological pathways, clusters 𝑐 are not
necessarily disjoint. For example, ATP, a universal energy molecule
occurring in mitochondria and cytoplasm, is often used to drive several
biological reactions. If we consider these compartments as clusters, they
are overlapping since ATP can be transported from the mitochondria
to the cytoplasm. Another example would be the relationships of ATP
in the biological ontology. Since ATP occurs in many categories of
biochemical reactions, including Citric Acid Cycle and Urea Cycle, its
representation should be covered by multiple clusters in the model. In
some cases, to simplify the visual complexity of clustered graphs, biol-
ogists duplicate unimportant vertices (e.g., vertices with high degrees)
to create a specific type of clustered graph, where aliases of an identical
vertex only belong to a corresponding cluster. In other words, clusters
become disjoint in this case [49].

3.7. Multilayer graphs

We can transform a cluster graph with complex grouping informa-
tion to a multilayer graph. When it comes to advanced analysis, the
term used for describing more nested relationships between entities
beyond clusters is often called multiplex, while other terminologies
such as multilevel, multivariate, multidimensional, multirelational, or net-
work of networks that describe similar concept are also used in current
research [22,50]. As summarized by Kivela et al. [50], the above terms
can be re-framed and encapsulated by the definition of a multilayer
network. Therefore, one can use multilayer networks as an umbrella
term to cover the aforementioned graph models in the field of biolog-
ical networks. A multilayer graph is a simple graph 𝐺 with additional
layer information to describe real-world properties of the network in
a whole [50]. Layers in multilayer (Fig. 3(f)) networks are used to
describe the corresponding relationships, where each of which records
the property of the corresponding relationships. In this STAR, we follow
the formal definition by McGee et al. [51].

Definition: Since each 𝑣 ∈ 𝑉 can belong to several layers, we can
consider vertices as pairs (𝑣, 𝑙) ∈ 𝑉𝑀 ⊆ 𝑉 × 𝐿, where 𝐿 is the
set of associated layers. Edges 𝐸𝑀 ⊆ 𝑉𝑀 × 𝑉𝑀 indicate the
connectivity of pairs (𝑣𝑖, 𝑙𝑝), (𝑣𝑗 , 𝑙𝑞). An edge is considered as an
intra-layer edge when 𝑙𝑝 = 𝑙𝑞 or an inter-layer edge when 𝑙𝑝 ≠ 𝑙𝑞 ,
respectively.
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In biological networks, we could have 𝐿 = {𝑙1, 𝑙2, 𝑙3,… , 𝑙𝑝}, where
1 could be metabolites occurring in mitochondria and 𝑙2 could be
etabolites existing in the cytoplasm, and so on. Note that some
etabolites, such as H2O, which occur in both mitochondria and cy-

oplasm, can be connected using an inter-layer edge. This formulation
ecomes powerful in the sense that it covers existing concepts and can
e further used as an intermediate form to transform one concept to
nother, not only as a model but also visually [50]. In practice, we can

use multilayer graphs as a unified graph structure because the graphs
described in Section 3.1–3.6 are also multilayer graphs for a specific
layer set 𝐿. Thus, researchers can always convert the aforementioned
graphs to multilayer graphs and again convert them to the target graph
data structures. This scheme allows us to perform a systematically
onsistent conversion to different graph representations, as well as
sing the multilayer graph as a standard diagram when compared to
ther visual representations. Examples can be found later in Figs. 16

and 17.

3.8. Graph data structure in practice

Classical biological analytics tools cover the subsets of aforemen-
ioned graph data structures. Cytoscape [52] is a general-purpose vi-
ualization software for complex networks and several plugins for bio-
ogical networks have been integrated. The underlying data structure of
ytoscape utilizes the well-known graph editor yFiles [53]. The COBRA

Toolbox [54] integrates MATLAB for quantitative prediction of cellu-
ar biochemical networks. The toolkit incorporates CellDesigner [55],

which is a graphical editor designed for gene-regulatory and biochem-
ical networks. Reactome [56] is an open-source and peer-reviewed
knowledge-base of biomolecular pathways. The visualization tool Re-
actomeFIViz [57] implements several functions for network-based data
analysis and the graphs are extended from Cytoscape [52]. BioCyc [58]
s pathway and genome databases, that integrate Pathway Tools [59]
hich facilitates genome data management, systems biology, and omics

data analysis. WikiPathways [60] is a community-based biological
athways database, which integrates PathVisio [61], allowing visual-
zing, editing, and analyzing biological pathways. The aforementioned
ools and most literature collected in this survey support primarily
roperty graph infrastructure for single graphs, 𝑘-partite graphs, and
luster graphs through user intervention. For hypergraphs, the software
ften requires graph conversions (e.g., vertex and edge duplication)
o simple graphs for maintenance purposes. More advanced structures
uch as multilayer graphs have not yet been widely used.

4. Graph analysis

The general goal of network visualization is to convey or extract
information regarding the underlying data effectively. However, with
iological datasets growing in size and complexity, straightforward
isualizations may no longer suffice in aiding researchers. Instead, if

visualization tools are to meaningfully assist domain experts, it may
be necessary for them to include certain analysis approaches that pre-
select, summarize, or analyze the data (semi-)automatically. Different
domains, data, and networks bring with them different analytical goals
and analysis tasks, each of which may require different analytic strate-
gies to address. In this section, we aim to give the reader an overview
of some of these many network analysis tasks, as well as some common
approaches and techniques used to tackle them.

Specifically, we first provide an overview of some simple, but useful,
escriptive metrics commonly used in the visual analysis of networks,
amely graph density, vertex centrality, as well as some common network
imilarity measures. Additionally, beyond such descriptive approaches,
esearchers are often also interested in investigating groups of vertices
nd the ways in which they interrelate; often achieved using motif
dentification or clustering.
6 
4.1. Density

The density of a (sub)graph 𝐺 = (𝑉 , 𝐸) quantifies how many edges
|𝐸| it has compared to the maximum possible number of edges in a
complete, here undirected, graph with the same number of vertices
|𝑉 |, i.e. |𝐸|𝑚𝑎𝑥 = |𝑉 |(|𝑉 |−1)

2 edges [2]. By comparing this hypothetical
quantity to the actually observed number of unique edges, one can
calculate the graph’s density, formulated by Pavlopoulos et al. [23] as

𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 =
|𝐸|

|𝐸|𝑚𝑎𝑥
. (1)

As a rule of thumb, a graph can be considered dense if |𝐸| = 𝜔(|𝑉 |),
.e. it has a superlinear number of edges; otherwise, if |𝐸| = 𝑂(|𝑉 |),
t may be considered sparse [2]. To make this concept more tangible,

consider Fig. 4(a) in which two graphs are shown, one of low density
(left), i.e. 𝐺𝑙 𝑜𝑤 = 5∕|𝐸|𝑚𝑎𝑥 = 0.041 and one of relatively high density
(right), i.e. 𝐺𝑙 𝑜𝑤 = 30∕|𝐸|𝑚𝑎𝑥 = 0.25, where |𝐸|𝑚𝑎𝑥 = 16(16 − 1)∕2 = 120.
The exact interpretation and importance of a graph’s density depend
n the type of biological network under study and the analysis goals.

(Sub)graph density estimation finds application in both the non-
visual analysis and visualization of biomedical network data. First, in
analysis, density is a natural choice to compare identified subgraphs.
Thus it finds regular use in vertex clustering applications, be it as (i) a
et of weights for each vertex estimated from each vertex’s local neigh-

borhood’s subgraph [62], (ii) the actual metric upon which the vertex
clustering is based [63,64], or (iii) a means of comparing and evaluat-
ing the identified clusters’ structures [65]. In visualization applications,
however, (sub)graph density has taken on a number of varied roles. In
the simplest case, its use can also be as straightforward as metric to
compare clusters and even entire graphs. For example, both Koutrouli
et al.’s NORMA tool [66] and Theodosiou et al. [67], present density
among other common topological summaries, such as the number of
edges and nodes, the clustering coefficient, or various centralities, in
order for users to quickly evaluate and compare (sub)graphs. Moreover,
as density provides a natural way of summarizing the ‘‘quality’’ of
a cluster compared to others, the metric is regularly used to rank
identified clusters [68], or allow users to filter clusters from the visu-
alization whose density is below some user-set threshold filtering of
identified clusters [69,70]. Alternatively, density values can also be
used to guide user attention. On one hand, this can be as simple as
highlighting aspects of the graph based on these metrics. For example,
Chang et al. [71] highlight miRNA ‘‘modules’’ based on their edge
density in order to draw visual attention. On the other hand, densities
ave also been used to produce new, simplified visualizations of some

input embedding in order to better guide users to potential regions
f interest. For example, Ebbels et al.’s springScape [72] utilizes an

embedding’s vertices’ 2D coordinates as well as its subgraph densities
to produce 3D ‘‘density landscapes’’ representations of the microarray
data, in order to allow domain experts to better identify regions of
interest.

4.2. Centrality

Beyond looking at an entire (sub)graph’s density, one may also
e interested in identifying or ranking its important vertices, be it
o select targets of potential biological value [73], or to reduce the
imensionality of the problem [74]. This ranking can based on some
elected structural features of the network, by utilizing one of the many
vailable measures of centrality [23]. Depending on the biological ques-
ion posed, certain structural features are more important than others,
nd thus different measures of centrality may be of greater utility
han others. For example, one may be interested in identifying highly

connected hub proteins in protein–protein interaction networks [75],
genes and motifs important within genetic regulatory networks [76],
or proteins crucial for the network’s overall robustness to perturbation
in metabolic engineering [77]; each of which requires a different type
of centrality. Consider, as an example, Fig. 4(b), in which, given some
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Fig. 4. Visual illustration of the 5 discussed graph analysis metrics and approaches, i.e Visual illustration of the 5 discussed graph analysis metrics and approaches, i.e (a) graph
density, (b) node centrality, (c) graph similarity, (d) motif identification, and (e) (node) cluster identification. (A) showcases two graphs, one of low edge density (left) and one of high
density (right). (B) highlights, given a simple input graph (left), the three identified nodes with the highest degree, betweenness, and eigenvector centrality displayed as turquoise,
red and blue square nodes respectively. (C) displays two graphs to be compared, a reference (left) and some second graph (rights) in which all node and edge additions and
removals are highlighted in blue and red, respectively. (D), given some input graph (left), displays all identified motifs of size three and four (right) in turquoise. Finally, (e),
iven some input graph (left) showcases the results of a hypothetical clustering (right) in which the three identified clusters are colored in turquoise, red, and blue.
c

c
C
t

input graph (left) three different nodes of importance are highlighted
ased on different topological properties (right): the degree of the node,
he number of shortest paths that pass through the node, and the
opological importance of the node’s neighbors. While many forms
f centrality have been developed (see [78] for a fairly exhaustive
eview), we will briefly enumerate and discuss some of the most
ommon and simpler types of centrality to illustrate how varied and
seful their applications can be.
Degree centrality [79] simply measures how well-connected a ver-

ex 𝑣 ∈ 𝑉 is:

𝐶𝑑 𝑒𝑔 𝑟𝑒𝑒(𝑣) = 𝑑 𝑒𝑔(𝑣), (2)

where 𝑑 𝑒𝑔(𝑣) is the total number of edges connected to vertex 𝑣. Thus,
the more edges to other vertices 𝑣 has, the higher its centrality. Such
vertices with high degree centrality are often referred to as hubs and
can be interesting biologically as their removal can greatly alter the
etwork’s overall topology [23]. For example, Zotenko et al. [75]
tilized degree centrality to quantify how essential proteins are, in
rder to investigate the correlation of proteins’ ‘‘essentiality’’ with
he ‘‘lethality’’ of their removal from the system. Alternatively, Chang
t al.’s [71] miRNET and Kuijpers et al.’s [40] DynoVis utilize degree
entrality as a measure of importance to rank and identify vertices of
nterest.
 t

7 
Closeness Centrality describes the mean distance from a vertex to
other vertices by computing the average shortest distances between the
urrent vertex 𝑣 and all other vertices in 𝑉 ⧵ {𝑣} [80]:

𝐶𝑐 𝑙 𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑣) = 1
∑

𝑤∈𝑉 ⧵{𝑣} 𝑑 𝑖𝑠𝑡(𝑣, 𝑤)
, (3)

where 𝑑 𝑖𝑠𝑡(𝑣, 𝑤) is the length of the shortest (hop or weighted) path
between vertices 𝑣 and 𝑤. Intuitively, the higher a vertex’s closeness
entrality score, the closer a vertex is to all other vertices in the graph.
ommonly, closeness centrality is often used to identify central, and
hereby important, metabolites in large metabolic networks [2,23],

though it also has seen use in gene regulatory networks [76]. For
example, da Silva et al. [81] utilized closeness centrality to identify
metabolites crucial to the functioning of genome-scale metabolic net-
works in a variety of organisms. Beyond identifying important vertices,
this measure has also been used to analyze the structure [77] and
evolution [82] of metabolic pathways.

Betweenness Centrality [83] quantifies how many of the shortest
paths between any two vertices pass through the vertex 𝑣 of interest:

𝐶𝐵 𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠(𝑣) =
𝜎𝑤𝑢(𝑣)
𝜎𝑤𝑢

, (4)

where 𝜎𝑤𝑢 is the total number of shortest paths connecting all pairs of
vertices 𝑤, 𝑢 in 𝑉 ⧵ {𝑣}, and 𝜎𝑤𝑢(𝑣) is the total number of those paths
hat pass through the current vertex of interest 𝑣. In protein–protein
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interaction networks, this type of centrality is often used to identify
roteins that form bridges, as well as bottlenecks, in the network’s
opology [2,23]. An example thereof can be seen in Joy et al.’s [84]
nvestigation of high-betweenness proteins and those proteins’ evolu-
ionary as well as functional importance. Researchers studying cancer

have also utilized betweenness centrality to identify crucial metabolites
in signaling pathways [85] and essential genetic drug targets [86].

Eigenvector Centrality quantifies how connected a vertex is to
important other vertices [3], i.e. the more important a vertex’s neigh-
bors, the higher its centrality value. Bonacich [87,88] formulates this

etric intuitively as a weighted sum of a vertices’ direct and indirect
onnections’ centralities. Because of eigenvalue centrality’s weighing of
nformation beyond the immediate adjacency of a vertex, this particu-
ar centrality has been used, for example, to identify crucial protein
athways involved in biological processes [89]. It has also been used

to identify as well as predict gene–disease associations [90] as well as
study connectivity patterns in human brain fMRI data [91].

Lastly, Eccentricity Centrality computes the accessibility of a vertex
from all other vertices in the graph:

𝐶𝐸 𝑐 𝑐 𝑒𝑛𝑡𝑟𝑖𝑐 𝑖𝑡𝑦(𝑣) = 1
max𝑤∈𝑉 (𝑑 𝑖𝑠𝑡(𝑣, 𝑤))

(5)

Unlike closeness or betweenness centrality, eccentricity does not con-
sider the sum or average across all vertices in the graph. Instead, it only
considers the largest value, which makes it sensitive to outliers [78].
Nonetheless, this measure has been important in identifying essential
proteins in protein–protein interaction networks, as an easily reachable
protein, i.e. a protein with a high eccentricity score, is sensitive to
changes in other proteins’ concentrations [92].

In summary, visualization tools aimed at biological network analysis
or exploration, across biological domains, often feature centrality as
a means of screening, ranking, and/or highlighting nodes with ex-
ceptional centrality scores. VANTED [93,94], DynoVis [40], and Omic-
sNet [95], for example, all allow users to rank network nodes using
egree centrality to detect network hubs within the context of systems
iological data; though DynoVis and OmicsNet feature multiple types
f centrality measures where VANTED does not. miRNET [39] features

very similar ranking and highlighting functionality to VANTED, but
tailored to miRNA data specifically. Within the context of protein–
protein interaction networks, cytoNCA [96] provides eight centrality

easures with which to screen and highlight vertices of interest. Lastly,
entiBin [97] allows for the investigation of multiple centrality dis-

tributions in order to better select cutoff values and thereby better
select nodes of interest, in addition to the aforementioned highlighting
and ranking. Some visualization tools go beyond ‘‘just’’ ranking and
ighlighting. For example, MetPA [98] utilizes betweenness centrality
cores to facilitate pathway enrichment and pathway topology analyses,

the results of which are then presented visually in order to ensure their
alidity.

4.3. Network similarity

Beyond quantifying a network’s density or ranking its vertices, we
may also be interested in comparing two networks. Consider, as an
xample, Fig. 4(c): given some input graph displayed as an adjacency
atrix (left), we highlight all changes, i.e. additions and subtraction, in

urquoise and red respectively. However, such purely visual inspections
re, of course, limited and not the only way to compare graphs of
nterest. One could, for example, compare the difference in two net-
orks’ densities. However, more sophisticated (visual) approaches have
een put forth over the years to address this challenging topic [99],

which Sugiyama et al. [100] group into alignment-based or alignment-
ree methods. Given the depth and breadth of this topic, we refer the

reader to the recent review by Tartardini et al. [101] for an overview
of available approaches. Owing to their predominance in biological
pplication, we opt to focus on comparing networks with known-vertex
orrespondences, i.e. two or more networks that share the same set of
8 
vertices [102]. More specifically, in this section we aim to provide an
overview of three such known-vertex correspondence approaches dis-
cussed by Tantardini et al. [101], namely (i) Differences in Adjacency
Matrices, (ii) the DeltaCon metric, and (iii) the Cut distance.

As will be discussed later, an Adjacency Matrix communicates
hether, and (if weighted) with what weight, two vertices in a graph

are adjacent to each other. More specifically, each row and column
corresponds to a vertex in the graph, and each matrix cell represents
the presence/absence or weight of an edge between vertices in the
corresponding row and column. For undirected graphs, these matrices
are symmetric; for directed graphs, they are not. If two graphs share
the same set of vertices, then one can simply calculate the distance
between their adjacency matrices based on some matrix norm. While
 straightforward and simple technique, such differences can already
rovide a good first look at a network comparison problem [101].

The DeltaCon Measure computes pairwise vertex similarities within
ach network, which can then be used to calculate the similarity
etween the two networks [103]. First, the similarity between vertices

𝑣 and 𝑢 is defined as 𝑆[𝑣𝑢] = [𝐼 + 𝜖2𝐷 − 𝜖 𝐴]−1, where 𝜖 is some small,
positive constant, 𝐼 is an identity matrix, 𝐷 is the diagonal of vertex
egrees, and 𝐴 is the network’s adjacency matrix [101]. The element

𝑆[𝑣𝑢] quantifies the influence that vertex 𝑣 has on 𝑢, i.e. the more
paths connect the two, the higher their influence on one another [103].
With all pairwise vertex similarities computed in both networks to
be compared, one can construct the similarity matrices, 𝑆1 and 𝑆2,
of the two networks. Second, using each network’s similarity matrix,
the two networks’ distances from one another can be calculated using,
for example, the Matusita distance, though other distance or similarity
measures could theoretically be used [103]:

𝑑 = 𝑑𝑀 𝑎𝑡𝑢𝑠𝑖𝑡𝑎(𝑆1, 𝑆2) =
√

∑

𝑣∈𝑉

∑

𝑤∈𝑉
(
√

𝑆1[𝑣𝑢] −
√

𝑆2[𝑣𝑢])2 (6)

Compared to a simple difference in adjacency matrices, this approach
satisfies four desirable properties, namely (i) changes that disconnect
vertices or sub-graphs are more heavily penalized than changes that
maintain connectivity, (ii) the bigger the weight of an edge, the larger
its influence on similarity should it be removed, (iii) highly specific
hanges in a graph with few edges are more influential than in graphs
ith many edges, and (iv) random deletions or additions to a graph
re not as influential on the similarity score, compared to targeted
nes [103].

Alternatively, given two input graphs with the same set of vertices
but different edges connecting them, 𝐺1 = (𝑉 , 𝐸1) and 𝐺2 = (𝑉 , 𝐸2),
and two disjoint sets of vertices, 𝑆 , 𝑇 ⊂ 𝑉 , the Cut Distance, based
on the maximum cut weight [104], measures similarity based on the
ifferences in cut edge weights across all possible bi-partitions of 𝑆 and
in graphs 𝐺1 and 𝐺2 [101]. More specifically, the method attempts

to find the non-minimal sets of edges to be removed from each graph,
i.e. 𝐶1 ⊂ 𝐸1 and 𝐶2 ⊂ 𝐸2, in order to maximize the difference between
each graph’s sum of cut edges’ weights:

𝑑(𝐺1, 𝐺2) = max
𝑆 ⊂𝑉

1
|𝑉 |

|

|

|

𝑒𝐺1
(𝑆 , 𝑆𝑐 ) − 𝑒𝐺2

(𝑆 , 𝑆𝑐 )||
|

(7)

where 𝑆𝑐 = 𝑉 ⧵ 𝑆, and 𝑒𝐺(𝑆 , 𝑆𝑐 ) = ∑

𝑣∈𝑆 ,𝑢∈𝑆𝐶 𝛽𝑣𝑢(𝐺), and 𝛽𝑣𝑢(𝐺) is
the weight of the edge connecting vertices 𝑣 and 𝑢 in graph 𝐺 [105].
A key advantage of the Cut Distance, over other measures of network
similarity, is its ability to function with both directed and undirected,
as well as weighted and unweighted graphs. On the other hand, a key
disadvantage is its computational complexity, making its application to
large networks (common in biology) unfeasible [101].

Despite many visualization tools being published for the purpose
of comparing biological networks, for example NetConfer [106], CoEx-
pNetViz [107], or DynoVis [40], such tools primarily provide a visual
omparison of networks and their meta-data only. Owing to adjacency

matrices’ straightforward visualization and interpretation, a number
of tools, across various biochemical domains, have been published
which feature them. Within the context of comparative visualization
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specifically, such tools most commonly feature side-by-side views of
sub-)graphs. On the one hand, for example, within the context of
eneral time-dependent graphs, Bach et al.’s Small MultiPiles [108]
rovides an interactive visualization of adjacency matrices; viewable
uxtaposed or interchangeably [21]. On the other hand, for brain
connectivity studies, Yang et al. [109] visualize brain subgraphs across
experimental conditions as side-by-side adjacency matrices. Similarly,
New et al. [110] visualize subgraph adjacency matrices side-by-side
in order to study differences in genetic co-expression. However, the
calculation of adjacency matrix differences appears to be less common.
One example, Dang et al.’s BioLinker [111], visualizes conflicts, i.e. dif-
ferences, in literature/database-derived interactions between biological
entities as a heatmap adjacency matrix in order to facilitate a more
complete understanding of possible protein interaction patterns. Almost
no published tools were found in this study that employed any of the
more complex analytical comparison techniques, i.e. DeltaCon or Cut
Distance. One example of the use of the Cut Distance is Theodosou
et al.’s NAP [67], which allows users to calculate the minimum st -cut
between two selected nodes, not for explicit comparison, but for general
topological analysis of biological networks.

4.4. Motif identification

Motifs are structures that are statistically over-represented relative
to some null model which describe a particular pattern of interaction
between vertices in a network [2]. Sometimes described as the ‘‘build-
ing blocks’’ of larger networks [112], these substructures can assist in
nswering a multitude of biological questions, from identifying and
redicting the biological function of a network’s subunits to disease
iscovery based on known and predicted motif function [113]. To

appreciate motifs’ nature as the building blocks of a network, consider
Fig. 4(d): given some input network (left), several motifs (of sizes
|𝑉 | = 3 and |𝑉 | = 4 nodes) are identified and highlighted (right). While
a complete discussion of the many possible approaches to motif identi-
fication is beyond the scope of this STAR, we discuss some of the core
concepts and challenges. Generally, the process of motif identification
can be broken down into three distinct steps; (i) the counting of all
subgraphs of various sizes present in the network under consideration,
(ii) the calculation of the uniquely identified subgraphs’ frequencies of
occurrence, and (iii) the determination of those frequencies’ statistical
significance [113,114].

The first of these three steps, the identification of unique sub-
graphs, can already form a problematic computational bottleneck in
motif identifications, as the number of possible sub-graphs increases
exponentially with the maximal motif size [114]. Generally, subgraph
ensus approaches can be placed into one of two categories: first,

exhaustive searches, usually using pattern growth trees, which do not
scale well with large networks or subgraph sizes; or second, heuristic
or probabilistic searches, such as, but not limited to, probabilistic
sampling of edges or vertices, or mapping strategies. The key trade-off
lies between the method’s computation time and the accuracy of the
census.

Once all present subgraphs have been counted, one must ensure
hey are accurately classified into unique isomorphic motif classes.

hile some subgraph census algorithms already categorize found mo-
ifs by their unique isomorphic forms, not all do [115,116]. A discus-

sion of these algorithmic approaches is beyond the scope of this STAR,
ut the reader is referred to Ehrlich et al. [117] for an overview.

Lastly, once all unique motifs’ frequencies in the input network
have been calculated, one must evaluate whether, and which, of these
frequencies is statistically significantly different from those estimated
from some random graphs. Doing so requires the repeated simula-
tion of random networks, and repeating the aforementioned first and
second steps in order to estimate each randomly generated graph’s
frequencies of unique subgraphs. This final step which forms the most

114]. It also
computational hurdle in network motif identification [
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poses the greatest challenge analytically, as the selection of a sensible
generative model for these random graphs is non-trivial, as a researcher
must consider what assumptions they are willing to make about the
nderlying generative process, as well as the extent to which these as-

sumptions can be validated. One straightforward approach is selecting
an assumed applicable random graph null model, such as permuta-
tions of the input network. Two common approaches are the so-called
‘‘Switching Method’’ and ‘‘Matching Method’’ [114]. The ‘‘Switching
Method’’ repeatedly randomly selects two edges, and subsequently
exchanges their ends in order to create a differently connected version
f the input graph. The ‘‘Matching Method’’ randomly reconnects all
ertices while keeping each vertex’s number of incoming and outgo-
ng edges consistent with the original network. Lastly, for particular
pplication areas, one can also consider (non-)parametric resampling
pproaches [118]. Often called ‘‘bootstrapping’’ approaches, these rely

on repeatedly drawing a random (sub-)set of vertices from the original
graph [119], or specific sub-regions of the original network [120].

Motifs and their identification find use across biological domains,
hough they are used for a broad range of purposes, from analysis
o evaluation. For example, within the context of gene regulatory
etworks, Zarnegar et al. [121] identify motifs in order to better under-

stand both gene expression and functional associations. For metabolic
networks, Droste et al. [122] identified so-called ‘‘motif-stamps’’ in
order to better guide the automated drawing of the metabolic network.
In the context of multi-omics networks, both Rohn et al. [93] and
Zander et al. [123] provide motif identification to facilitate more
omplete topology-based analyses of multi-omics networks. In Protein–

Protein Interaction Networks, Spirin et al. [68] identify motifs in order
to discover novel molecular modules in protein–protein interaction
networks. Within the context of genomic variation graphs, Guarracino
et al. [124] utilized motif identification to understand complex pan-
genomic relationships between sequences of DNA. Lastly, Al-Awami
et al. [125]’s NeuroLines tool identifies repeated connectivity motifs
n the brain in order to identify potentially biologically interesting
ynaptic pathways. Even when motifs are not explicitly incorporated
nto an analysis or visualization, they are frequently used to evaluate
he results obtained [67,126,127]

4.5. Cluster identification

Clusters are vertices grouped together based on common proper-
ties [23]. This grouping attempts to ensure objects within the cluster
are as homogeneous as possible while separating objects with different
properties into distinct clusters [128]. Consider, as an example, the
lustering shown in Fig. 4(e): given some input graph (left), we identify

three clusters of nodes, shown in turquoise, red, and blue (right).
Application areas in biology include, for example, the identification
of clusters of proteins in protein–protein interaction networks that

ay be functionally involved in a similar biological process and thus
orm a biological complex [129]. However, owing to the computational

complexity of the clustering problem, as well as the diversity of data
and analytical goals, many approaches have been put forth over the
years [128]; though only a handful are realistically applicable to the
arge problems encountered in modern biological applications [2]. We

highlight three noteworthy categories of techniques; (i) k-partition
approaches, (ii) hierarchical approaches, and (iii) density-based meth-
ods [130,131]. These approaches do not necessarily provide exclusive
lustering, i.e. a one-to-one mapping of vertices to clusters, but can also

produce probabilistic, overlapping/fuzzy, or hierarchical clusters [23].
k-Partition Clustering , as the name implies, aims to partition the

raph’s vertices into k clusters [23]. Such approaches are useful if a
user is seeking a computationally cheap approach to clustering, or has
a particular number of clusters, k, already in mind. Starting with some
initial assignment of each vertex into one of the k clusters, k-partition
clustering iteratively minimizes some dissimilarity measure within each
group. The perhaps most well-known of these techniques is k-Means
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Clustering, which minimizes the within-cluster sum of squares of some
istance function, i.e. the mean difference in distance between each
ertex in some group, and that group’s overall mean [132]. While

simple, this approach does bring with it a number of disadvantages.
It is sensitive to its initial random assignment of vertices within clus-
ters, meaning the algorithm will produce a different final clustering
depending on the initialization. Moreover, the selection of 𝑘 presents
a challenge, i.e. the method will always produce 𝑘 clusters, and a
vertex’s cluster assignment can vary greatly for different selections of
k. Additionally, owing to its use of the mean distance measure, it is
sensitive to outliers [131]. To address the shortcomings of conventional
-Means clustering, a number of extensions and alternatives have been

developed over the years. Consider, for example, k-Medoid Clustering,
which utilizes the distance between each cluster’s vertices and the
cluster’s median, instead of the mean, thus making it less sensitive to
outliers. Other examples, which attempt to address other shortcomings
of k-means clustering include, but are not limited to, Fuzzy k-Means,
Kernel k-Means, or Farthest First Traversal k-Means [131,133]. Of
all the partitioning techniques, k-Means Clustering has found use in
iological applications, most likely owing to its conceptual simplicity
nd availability. For example, within the context of protein–protein
nteraction networks, Barsky et al. [134] featured k-Means Clustering in
rder to identify proteins and/or genes with similar expression profiles
cross experimental conditions. However, k-Medoid clustering has also
ound application in biochemical application areas, such as in Mildau
t al. [135] SpecXplore tool for the interactive exploration of tailored
ass spectral data.

Biological graphs may have hierarchical structures of potential in-
terest within them, or a researcher may be interested in evaluating
estimated groupings at multiple levels before selecting a single level
o investigate [2]. In such a case, Hierarchical Clustering approaches
an be useful to create multilevel groupings based on vertex simi-
arities [136]. With all pairwise similarities calculated, one can then

iteratively group in increasingly large, hierarchical clusters, i.e. ag-
glomerative clustering. Alternatively, these pairwise similarity mea-
sures can be used to iteratively break the graph into increasingly
small clusters in a ‘‘top-down’’ fashion [23]. Either way, this step-wise
rouping based on some measure of vertex similarity, can consider, for

example, Single, Average, or Complete Linkage, i.e. the smallest, average,
or largest distance between all pairs of objects, respectively; though
dditional forms of linkage exist [2].

Various forms of hierarchical clustering for multiple applications
can be found in biomedical (visualization) literature. Generally, such
techniques seem to be found frequently in exploratory (visual) analyses,
as interactively setting the clustering threshold can reveal different rela-
tionships between entities. For example, Cruz et al. [137] implemented
ierarchical clustering to allow users to explore different relationships

of a node across clustering hierarchies in dynamic gene expression
ata. Similarly, Bartell et al. [138] and Varemo et al. [139] provide

similar clustering though for gene-set and SNP datasets respectively.
eyond molecular networks, Riaz et al. [140]’s tool MAPPS allows

for agglomerative hierarchical clustering in order to group organisms
based on their overall metabolic network similarities. These clusters can
allow researchers to explore hypotheses relating to metabolic network
imilarity and specialization.

Based on the input network’s geometry, Density-Based Clustering
pproaches stratify the input network into groups of vertices of high

density, separated by regions of low density [131]. As illustrated by
Kriegel et al. [141], these methods ‘‘cut’’ the 3D probability density
unctions produced by a 2D input graph in order to identify groups
f clustered vertices. For networks that do not have some intrinsic
patial interpretation, i.e. the majority of biological networks, one must
elect an appropriate (dis)similarity function in order to define some
ata space. This ‘‘cut’’’s density value must be considered carefully;
oo high and low-density clusters are lost; too low and only a single

141]. With the exception of this ‘‘cut’’
arge cluster will be identified [

10 
value, density-based clustering techniques are (largely) non-parametric.
This lack of (hyper-)parameters to specify enables the identification of
arbitrary numbers of clusters of arbitrary shape [141]. The estimation
of an appropriate ‘‘cut’’ threshold is, however, non-trivial.

Generally, in biological visualization platforms, clustering can be
 useful tool to organize and simplify produced visualizations. First,
hierarchical) clustering is a common choice to determine the order
f rows and columns of matrix representations of graphs [110,142–

144], which ensures that adjacent elements are more similar than those
further from one-another thereby highlighting group-associations of
nodes. Second, clustering can also be useful to simplify or improve the
visualization of a graph. For example, Angori et al. [145,146] clustered
nodes into separate radial graphs to make relationships within and
between clusters clear, as well as minimize edge crossings to make the
produced visualization more readable. Similarly, Lambert et al. [147]
made use of edge-bundling and clustering of nodes-clustering to ‘‘de-
lutter’’ visualizations of metabolic networks. However, clustering is
lso a useful tool to provide guidance to users. For example, Herandez

de Diego et al. [148] cluster metabolic pathways based on pathway
rofile similarity, which allows for the coloring of pathway nodes in
rder to assist users in identifying and comparing similar pathways.
lternatively, consider Lex et al. [149]’s tool Caleydo, which features

several different clustering techniques for pre-filtering and highlighting
gene expression data.

5. Network visualization

Abstract graph drawing algorithms form the core of network visu-
alization methods, whether they deal with biological networks [18] or
networks in other domains. A graph drawing algorithm takes as input
 graph 𝐺 = (𝑉 , 𝐸) (Section 3), potentially enriched with multivariate
ertex and edge attributes or having special structural properties such
s being k-partite, clustered, or multilayered. The algorithm then com-
utes a geometric representation of the graph, which, in most cases,
aps each vertex 𝑣 ∈ 𝑉 to a point 𝑝𝑣 = (𝑥𝑣, 𝑦𝑣) in the plane (or to a

arger vertex symbol such as a disk or box) and each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸
o a curve (or link) connecting the two endpoints 𝑝𝑢 and 𝑝𝑣. Such
rawings are also known as node-link diagrams and they come in many
ifferent variations depending on optional constraints on the vertex
ositions and the edge shapes, as well as the chosen quality criteria
also known as aesthetic criteria) to be optimized.

In this section, we discuss and give examples of the most prominent
graph layout styles with their corresponding positional and shape
constraints, i.e. straight-line node-link diagrams, radial node-link diagrams,
layered node-link diagrams, schematic graph drawings, adjacency matrix
representations, and hybrid graph representations, as well as commonly
applied quality criteria. For more details on graph drawing algorithms,
we refer to dedicated books [150,151] and surveys [152].

5.1. Straight-line node-link diagrams

One of the least constrained and most popular styles is the straight-
line node-link diagram [40,153,154], where vertices can be placed
anywhere in the plane and edges are drawn as straight-line segments,
see Fig. 5(a). Such graph drawings are usually driven by the idea that
djacent vertices are related and should be close to each other, whereas

vertices not connected by an edge should be sufficiently far apart.
Additionally, the drawings should have generally few edge crossings,
uniform edge length (or proportional to an edge weight parameter),
and balanced vertex distribution. Algorithms computing drawings in
this layout style often use physical analogies like a system of attractive
and repulsive forces [12,155], in which we search for a low-energy con-
figuration or the definition of a stress function to be minimized [156].
Typically, such graph drawing algorithms group the vertices of densely
connected subgraphs as spatial clusters, but if the graphs get too
dense, this may deteriorate and produce so-called hairball drawings
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Fig. 5. Six typical layout styles of graph drawings common in both general and
biological network visualization, i.e. (a) straight-line node-link diagrams, (b) radial node-
link diagrams, (c) layered node-link diagrams, (d) orthogonal (schematic) graph drawings,
(e) adjacency matrix representations, and (f) hybrid graph representations. All six repre-
sentations utilize the same graph 𝐺 = (𝑉 , 𝐸), where 𝑉 = {𝐴, 𝐵 , 𝐶 , 𝐷 , 𝐸 , 𝐹 , 𝐺 , 𝐻 , 𝐼 , 𝐽},
with the same |𝐸| = 16 undirected edges between them.

with high visual clutter. Various algorithmic approaches have been
proposed to improve the computational scalability for large graphs by
approximating forces and stress terms while maintaining the general
layout quality [157–159].

In recent years, machine learning models have been proposed and
trained to generate graph layouts that are visually comparable to
typical force- and stress-based drawings [160–163]. Machine learning
has also been used to compute vertices that can be duplicated in a
graph layout in order to reduce the number of edge crossings, e.g., for
biological pathway visualization [164]. Graph layout with the help of
machine learning techniques is an area that is still in its infancy and
requires more research to understand when it is helpful and when it
is not. Force-based graph drawings also form the basis for map-based
network visualization such as GMap [165], visualizing clusters in the
graph as countries in a fictional map.

The strength of such general-purpose straight-line node-link dia-
grams is that force- and stress-based algorithms and their objectives
are intuitive and easy to use, any graph can be drawn, and the user can
11 
quickly get a first visual impression of the data. A main disadvantage of
unconstrained graph drawings is that there are very few formal guar-
antees on the resulting drawing quality and its geometric properties.
These drawings hence bear the risk that the resulting drawings appear
cluttered and hard to understand, in which case more sophisticated
analysis and drawing methods need to be applied. Especially for larger
graphs, such general-purpose, force-based layout algorithms tend to
struggle to produce aesthetically pleasing results [13], owing to the
many local minima present in the underlying physical model [12].

Force-directed straight-line node-link diagrams are one of the most
popular approaches to network visualization across biochemical do-
mains (Fig. 2), likely owing to their broad applicability, computational
scalability, and intuitive interpretability [13]: from gene-regulatory net-
works [71,139], through protein interaction networks [111] (Fig. 13)
and metabolic pathways [154], to multi-omics networks [40]. Likely
owing to their poor visual scalability with increasing numbers of
edges and nodes [13], such straight-line node-link diagrams often form
only one of multiple simultaneous views of the data. For instance,
within the context of general systems biological network visualiza-
tion, both VizEpis [166] and GeRNET [126] (Fig. 11) feature radial
as well as schematic representations in addition to their force-based
straight-line ones. To better explore the results of mass spectrometry
results, xiNET [167] allows domain experts to explore their data in
an aggregated node-link diagram, a clustered and non-clustered radial
layout, a biochemically meaningful schematic representation, and a hybrid
layout. In general, straight-line node-link diagrams are a useful tool, but
one that must be used carefully, or in addition to other visualization
approaches.

5.2. Radial graph drawings

A more constrained layout style is the radial (or circular) drawing
style [166,168], which restricts all vertex positions to a given circle,
see Fig. 5(b). The edges of the graph are then drawn within the circle
as either straight lines or smooth arcs, whereas the outside of the circle
is usually not used for the drawing itself, but rather for augmenting the
drawing with additional information such as names, vertex attributes,
statistical plots etc. In such a radial drawing, one usually aims for a
uniform distribution of vertices along the circle and a vertex order
that induces a small number of edge crossings in the inside of the
circle [169]. In some settings, vertices may have different sizes and
can also be grouped or ordered by external attributes or an additional
clustering hierarchy. Radial drawings are visually appealing, with a
popular example of biological networks being the Circos system [170].
While radial drawings work well for small to medium-sized and not-too-
dense networks, the restricted space for vertices and edges can become
a challenge for large and dense graphs.

Radial representations appear to find frequent use when entity
nodes are to be visualized in (disjoint) groups. For example, one
of the views provided by xiNET [167], is a radial graph drawing
that places nodes (residues) dependent on their mapping to different
proteins. Two such drawings are offered; one which places all nodes
equidistantly along the circle’s perimeter, the other which places them
proportionally to their positions in each protein’s residue sequence.
Similarly, Pathrings [168] arranges genes on a circle’s perimeter to
make their mapping to Reactome’s hierarchical pathway taxonomy
clear. However, such grouping can also be communicated by placing
nodes on different circles, each with a different radius. For exam-
ple, miRNet [71,171] provides a concentric option in which miRNA
fragments are grouped into, for example, functional modules [172],
each of which has its fragments arranged along a different (semi-
) circle of varying radii. Additionally, instead of rendering multiple
circles of differing radii, each group’s subgraph could be drawn as a
circle and stacked in a 3D representation, as can be seen in Mango’s
so-called crown plots [173] or GeneNetVR’s time-series view [174].
Beyond representing groups and their entities, radial drawings are often
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featured as an additional view into (a fragment of) the graph, as it
an offer a more organized view into a network [126,166]. However,

as circular drawings scale poorly with increasing numbers of vertices
nd edges [175], edge bundling is frequently also employed in order to
rovide less cluttered drawings and also make group-level connectivity
learer.

5.3. Layered graph drawings

For hierarchical and directed graphs, which include in particular
ll trees, the layered layout style is frequently used. Such a drawing

is composed of multiple, usually horizontal layers, onto which the
vertices are distributed, see Fig. 5(c). The drawing aims to have all
edges pointing upward, i.e. for each edge, its source vertex should be
on a layer below its target vertex. This is only possible if the graph
has no directed cycles; otherwise, the number of downward-pointing
edges is minimized. For directed networks, this means that all or most
of the directed relationships or dependencies can be read by following
the upward direction, where edge directions are also indicated by
arrowheads or similar visual cues [176]. Further optimization goals in-
lude crossing minimization and straightness of edges spanning across
ore than two layers, as well as minimizing the number of layers and

imiting the number of vertices per layer. The main degrees of freedom
or such layered drawings include the vertex-to-layer distribution and
he ordering of vertices on the same layer. The popular Sugiyama
ramework [177] for layered graph drawing algorithms decomposes the

problem into a pipelined sequence of individual layout steps. Most of
he corresponding computational subproblems are NP-hard, but several

good heuristics and exact algorithms are known [178,179]. If the graph
o be drawn is actually a tree, specific tree drawing algorithms can be
pplied [180], not all of them computing layered layouts in a strict

sense.
Layered graph drawings are less frequently employed and find the

most application in visualizing graphs with an underlying tree structure
(Fig. 2). The most common application area of such drawings is the
visualization of phylogenetic trees. In such applications, each vertex
commonly represents a taxonomic classification or organism, and a (di-
rected) edge between them an ancestral relationship [181]. Commonly,
hese vertex layers are arranged horizontally and encode either simply

the depth within the tree, seen in MEGAN [182] or Phylo.io [183], or,
or example, the time domain, as seen in NextStrain [184]. However,

these layers need not be arranged horizontally or vertically only. Tools
such as the LifeMap [185] arrange the tree’s layers in a (pseudo)radial
ashion in order to make more complete use of the screen space. The
ree of Life [181] uses this additional space to visualize the network’s

metadata.

5.4. Schematic graph drawings

For more complex networks, where a simple straight-line node-link
diagram might be insufficient and too cluttered and radial or layered
rawings are not suitable, schematized network layouts placing vertices
n 2D grid positions and routing edges as polylines with a restricted

set of slopes, e.g. horizontal and vertical, or additionally using the two
main diagonals, can be applied [186], see Fig. 5(d) for an example.
uch layouts are reminiscent of electrical wiring diagrams, grid city

maps, or public transit maps. Typical optimization criteria in schematic
drawings include achieving compact grid sizes, minimizing the number
f bends, and minimizing the number of crossings. In order to deal
ith dense and non-planar networks additional techniques like vertex
uplication or edge bundling can be used to reduce visual clutter caused
y edge crossings [49]. Moreover, vertices with more than four incident
dges need to be represented as boxes with multiple ports on each side
ather than points since a point on a grid has only four outgoing grid
ines. Orthogonal and schematic drawings can also be combined with

187].
 layered approach for directed graphs [ e

12 
Together with straight-line node-link diagrams, schematic graph draw-
ngs form one of the most common visual representations of biological

networks (Fig. 2). Biochemical and biomedical domain experts are
familiar with very specific (often hand-drawn) layouts of (sub)graphs,
and thus many tools aim to reproduce, as well as augment, graphs
in that schematic embedding that are familiar to them. For example,
ntourage [188] aims to produce augmented drawings identical to those

found in the KEGG: Kyoto Encyclopedia of Genes and Genomes [41] in
order to allow domain experts to better explore and analyze their data.
Similarly, Blucher et al. [189] provided a tool to allow domain experts
to explore the relationship of biological entities within the context of
Reactome’s pathways and their visual representations. Beyond repro-
ducing existing drawings of networks, schematic representations also
create novel drawings using a visual language familiar to the user. For
example, within the context of protein interaction networks, xiNET [167]
represents a protein’s sequence of peptides as a linear arrangement of
rectangles. Differently colored edges connect both peptides as well as
entire proteins to communicate different functional relationships within
nd between proteins. Alternatively, within the context of metabolic
athways, Livingi et al. [190] represent different types of biological

entities, their location within the cellular system’s compartments, and
various types of relationships between them, using a Petri-Net-styled
drawing. Other tools, however, utilize automated schematization to
better communicate relationships between entities by rendering data
in a non-domain-specific style familiar to the user; most commonly
inspired by transportation or metro networks. Consider, for example,
NeuroLines [125] which represents the brain’s 3D topology as a subway
map. Similarly, Beyer et al.’s Sequence Tube Maps [191] (Fig. 19) also
make use of a visual metro-map metaphor, albeit to communicate
genome sequencing reads more intuitively. Lastly, Metabopolis [49]
(Fig. 14), again inspired by urban maps, represents metabolic pathways
as ‘‘city blocks’’, i.e. rectangular areas, and their entities’ relationships
as an octolinear set of nodes and vertices forming a ‘‘grid-like road’’.
n summary, schematic representations, while more complex to draw,
rovide the user with an intuitive visual representation of complex
iological data.

5.5. Matrix representations

A very different way to show networks is to use a matrix represen-
tation [121] rather than drawing the network as a node-link diagram.
The adjacency matrix of an 𝑛-vertex graph 𝐺 is an 𝑛×𝑛 square Boolean
matrix with one row and column for each vertex. The cell at row 𝑖
and column 𝑗 gets the value 1 if the edge (𝑖, 𝑗) is part of 𝐺; otherwise,
it is set to 0. For undirected graphs, both edges (𝑖, 𝑗) and (𝑗 , 𝑖) are
represented, turning them into a symmetric matrix. When visualizing
an adjacency matrix, cells with value 1 are encoded as colored pixels,
see Fig. 5(e). By re-ordering rows and columns, matrix representations
can be obtained that group the vertices of densely connected subgraphs
nd show them as submatrices of blocks of pixels with only few gaps so
hat high-level patterns of the graph topology become visible. Typical
ptimization criteria for the row and column ordering include the high-
ighting of certain structural patterns, e.g. by defining similarity scores
n row/column vectors and grouping similar rows/columns [142,143].

For certain network reading tasks (e.g. identifying adjacencies, high-
level graph comparisons), especially on large or dense graphs, matrices
ave advantages over node-link diagrams [192], which are usually

better at more complex pathfinding tasks.
Given this seeming superiority of matrix representation for certain

raph analysis tasks, it is surprising that they are fairly uncommon
Fig. 2). A possible explanation lies in domain experts’ preference

for the canonized schematic or straight-line node-link drawings of their
etworks; though examples of matrix representations offered along-

side [121] or instead of [193] (Fig. 8) such drawings do exist. Instead,
matrix representations are frequently utilized to provide a view into the
xperimental data itself; most commonly in visual gene (co-)expression
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analysis tools. In addition to these canonical graph representations,
ools such as Caleydo [149], VizEpis [166], or 3Omics [194], provide

the experimental-data-derived correlation or co-expression network dis-
played as a (clustered) heatmap [121]; though, similar correlation
network visualizations can be found in genomic variation graph [138]
nd brain network [195] applications. However, matrix representations

have been used specifically to facilitate the comparison of (sub)graphs
across conditions. For example, Bach et al.’s Small MultiPiles [108]
ffers the ability to browse a ‘‘flipbook’’ of matrix representations
o investigate dynamic networks at different time points. Addition-
lly, within the context of gene co-expression analysis, New et al.’s
ramework [110] (Fig. 9) allows for the identification and compari-
on of multiple subgraphs in side-by-side triangular matrix heatmap
epresentations.

5.6. Hybrid graph representations

Finally, the above-mentioned fundamental layout styles have also
een augmented and merged into hybrid representations that aim
o combine the strengths of two different visualization styles. Two
rominent examples of hybrid approaches are NodeTrix [196] and
hordLink [146]. The NodeTrix idea is a hybrid of node-link diagrams
nd matrix representations, originally proposed for social network
isualization. It uses pixel matrices to represent dense subgraphs, where
ode-link diagrams would produce too much clutter. Each matrix itself
an be seen as an aggregated vertex in a sparser high-level graph,
hich is displayed as a node-link diagram and thus has an advantage

n showing topological connectivity properties, see Fig. 5(f). Edges can
ither link whole matrices in an aggregated sense, or they may link
ndividual vertices via the rows and columns of different matrices.
hordLink follows a similar idea as NodeTrix, but it represents the dense
ubgraphs of clusters as radial layouts (here called chord diagrams),
hich are in turn connected in a node-link diagram that shows the
lobal network structure. In the chord diagrams vertex replication and
rdering schemes are used to reduce crossings and improve the visual
epresentation. Both systems provide an interactive interface to define
lusters and highlight areas of interest during exploration and analysis.

As these hybrid visualization approaches demand higher imple-
mentation efforts, they are used less frequently than any other graph
representation (Fig. 2). However, Henry et al.’s NodeTrix [196] repre-
entation has found use in the visual comparison of brain networks,
s NodeTrix allows for a simultaneous coarse- and fine-grained view
nto the global and local topology of the graph, respectively [109].

Similarly, ChordLink [145,146] has also found adoption in biological
network visualization [127,144], as it allows for an uncluttered view
nto the connectivity between groups of vertices to identify broader

trends. Lastly, Caleydo [149] provides a 3D view linking multiple
schematic graph representations with straight-line node-links between their
nodes.

5.7. Discussion

With the different types of network visualizations discussed above
(recall Fig. 5), a key question to a domain expert wanting to visualize
heir biological network data is to select the most suitable of these
isualization styles. This decision depends on multiple aspects of the
ata, in particular, (i) whether the graph is sparse or dense, (ii) whether
t is relatively small (less than 100 vertices) or large, (iii) whether edges
re directed or undirected, or (iv) whether clusters in the data should
e emphasized. Moreover, certain structural properties in the data are
elevant, for instance, the maximum degree of a vertex, or whether the

underlying graph belongs to a particular graph class, such as planar
graphs or trees, or whether it has no immediate or known structural
properties. As a rule of thumb, exploring a new network data set using
the force-based straight-line drawings first is usually a good idea. These
algorithms do not require any special structural properties of the graph
13 
and use the intuitive straight-line node-link diagram style. The mech-
anisms behind force-based algorithms also group clusters of densely
connected vertices and aim to distribute unrelated vertices evenly in
space. Finally, force-based layout algorithms are readily available in
most network visualization tools and do not require expert knowledge
or adaptations of specialized libraries. The many biological network
visualization examples listed in Section 5.1, which are following this
approach underline their frequent use in the domain.

The main disadvantage of force-directed layouts is the lack of qual-
ty guarantees coming with a risk of visual clutter and overplotting of

features. Resorting to other algorithms and layout styles may improve
readability of certain aspects of the data. For instance, layered drawings
or schematic drawings have specific constraints that avoid overplotting
of vertices and generally create a more orderly appearance of the graph,
usually at the expense of longer or non-straight edges. Likewise, if
the network turns out to be tree-like/hierarchical or has generally low
vertex degrees, then layered and schematic layouts could also be good
options. Lastly, also radial layouts may be a way of placing all vertices
in a well-structured manner along a circle, without requiring specific
graph structures. Radial layouts avoid giving some vertices a more
central or hierarchically higher position than others, a property that
may be undesirable in certain scenarios. Such a constrained placement
of the vertices, however, often induces higher number of edge crossings
such that interactive highlighting of edges might become necessary
in order to clearly indicate precise connectivity information. Lastly,
matrices offer a different visual representation of a network, which can
offer insights into the data that are less apparent in node-link diagrams.
As there is by definition no notion of clutter caused by edge crossings
in matrices, they do scale well to dense networks. For instance, densely
connected clusters as well as high-degree vertices with many neighbors
can be recognized well via visual patterns in a suitably ordered matrix
visualization [142]. Finally, if several layout styles are of interest for
the specific network data at hand, these can be combined either using
multiple linked views or in a hybrid style such as those discussed
in Section 5.6. This, however, usually comes at the cost of requiring
significantly more implementation and adaptation effort than using
general-purpose layout algorithms.

6. Graph analysis tasks

In network visualization, as in data visualization in general, the
nderlying data, and by extension the associated domain or research

question and consequentially the chosen visual representation, dictate
what kind of analysis tasks are to be performed. Several taxonomies
and typologies of varying degrees of specificity have been put forth
over the years. There are general taxonomies applicable to most vi-
ualizations [197–199] and ones tailored to general network analy-

sis [200]. Focusing on particular types of networks, there are even
more specialized taxonomies detailing, for example, temporal network
evolution [201,202], networks of overlapping sets [203], and biological
pathways [22].

In this work we scope the tasks used in the analyzed tools using
 taxonomy adapted from Lee et al. [200]. More specifically, we

select this particular taxonomy as it offers, in our estimation, the
ight level of abstraction for general biological network analysis and

visualization. More general taxonomies [197], on the one hand, are not
pecific enough to the objective of network visualization. On the other
and, more specific network task taxonomies [201], are too specific

to their particular sub-domains for a scoping analysis such as this and
subsequently do not feature sufficient overlap with the objectives of the
papers analyzed here. If applicable, however, the taxonomy by Murray
et al. [22] is mentioned as well, as the application domain is of high
relevance.
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Fig. 6. Illustrative examples of Lee et al.’s [204] four graph task’s objects focus: (a) the nodes, (b) the edges, (c) the groups, and (d) the paths. (A) displays some hypothetical
quantity mapped to the nodes’ surface area to guide users to potential nodes of interest. Similarly, (b) showcases some conceptual quantity mapped to the opacity of each edge to
guide users to potential edges of interest. Similar to the discussed tool iTol [181], (c) shows a group-focused visualization in which each group has been visualized in a different
olor (red, blue, and turquoise), and one of said groups has been expanded into its constituent nodes. Lastly, (d) showcases a path in red between two user-selected nodes (shown
s squares).
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6.1. Object focus of tasks

Lee et al. [200] taxonomy describes the notion of focal objects for
the definition of tasks. A focal point describes a central element of the
network visualization which plays the most integral role in a given task.

e distinguish between four categories of focal objects.
The first, arguably most common, focus is the network’s nodes

Fig. 6(a)). Many biological network visualizations feature nodes as
their focal object. For example, many applications featuring simple
straight-line node-link diagrams, such as STRING [205], utilize nodes
o display proteins in a simple straight-line node-link diagrams, 8.1.2

in which proteins and their associated interaction partners form the
focus of their visualization. But nodes as a focus are also featured in
ther network visualization types like trees. Both, MEGAN [182] and
euroLines [125] use nodes as focal points. MEGAN maps read data

o taxonomic or functional classification categories and display these
s nodes in a tree. NeuroLines on the other hand models connections
f neurites — i.e. axons and dendrites — as trees with the nodes
epresenting specific synapses.

Equally important in networks are its edges (Fig. 6(b)). Similarly
o nodes, edges are frequently used as focal objects in network visu-

alization. Sometimes, visualizations featuring a node focus will also
feature edges as focal objects. For example, the already discussed
STRING [205] features a node-focus and an edge-focus. Edges are not
nly simple connections between nodes but also communicate the level
f evidence present for the particular protein–protein interaction the
dge represents. Additional applications exist in which edges take
recedence over nodes. GeRNet [126] — an application for the visu-

alization of gene-regulatory networks — for example, features nodes in
ddition to edges. They, however, only indicate the object of interaction
hile the associated edges define the type of interaction in detail.
ome visualizations do not even render nodes at all but are focused
olely on the connections between them. NodeTrix representations, for
xample, utilize adjacency matrices — encoding edges between nodes
 and links connecting those matrices to visualize, for example, brain

connectivity networks [109].
Besides the two basic organizational units of networks, i.e. nodes

and edges, other objects can also form a visualization’s focus. Appli-
cations that aggregate or group similar objects, groups, clusters, and
connected components are often the key quantity of interest (Fig. 6(c)).
iTOL [181], for example, visualizes phylogenetic trees, displaying dif-
erent species and their relatedness. While each species is visualized as

a node, iTOL defines groups of species, so-called clades, which form an
qually important focus and can be interactively collapsed or expanded.

For other applications, such as Cruz et al. [137]’s visualization of RNA-
seq clusterings over time, other graph objects are only of secondary
importance, and it is the groups, i.e. the RNA-clusters, that form the
visualization’s object focus.
14 
Finally, sequences of connections, i.e. paths, can also be the focus
of an analysis task (Fig. 6(d)). This focus type is common in metabolic
athway visualizations, as these aim to visualize the metabolic events
nside an organism as a series of reactions—shown as edges between
odes. With Entourage, Lex et al. [188], for example, show impor-

tant paths in different related pathways based on experimental data.
Metabopolis [49] combines the group-focus with the path-focus to visu-
lize metabolic paths through semantically grouped blocks of metabolic
eactions. Besides metabolic pathways, genome graphs are another
ind of data visualization with a heavy focus on paths. Visualizing mul-
iple genome sequences as aligned paths, Sequence Tube Maps [191],

for example, displays identical regions as nodes and variations in
sequence as diverging paths.

6.2. Complex task focus

Besides the fundamental objects that are the subject of a given
analysis task, Lee et al. [204] further categorized graph analysis tasks
nto groups of complex tasks.

6.2.1. Attribute based tasks
The first category describes attribute-based tasks. Tasks are attribute

ased if they are related to attributes of the contained network prim-
tives, most commonly nodes and edges. Tasks concerning operating
n attribute data encoded by nodes are categorized as on the nodes.
urray et al. [22] also similarly describe Attribute tasks for biological

networks. PaintOmics [148], for example, colors nodes in metabolic
athways depending on the underlying measurement values of the
orresponding entities. This allows users to access these measurement
ttributes and answer questions such as ‘‘Which nodes possess high
easurement values?’’ or ‘‘Which nodes possess similar measurement

alues?’’. Another common task in this category is the search for
odes with a specific categorical attribute, often facilitated by assigning
ategorical colors to nodes. In OmicsNet [95] the different biological

entities, e.g., transcription factors, proteins, and miRNAs, are given
a unique color to allow the user to recognize the type of a given
node more quickly. Analogous to attribute tasks on the nodes, there
are also attribute tasks on the edges. Attribute data encoded on the
edges is the main focus of the hypothetical task. BioLinker [111], on
he one hand, uses categorical color coding to communicate types of
nteractions in a protein–protein interaction network. STRING [205],

on the other, utilizes its color coding to describe evidence types for
its protein–protein interactions. Beyond color, tree visualizations like

extstrain [184] often use a length encoding to encode the passage
of time between measurements or entities. In the case of Nextstrain
specifically, this allows users to quickly gauge the length of time a
particular pathogen has been active.
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6.2.2. Topology-based tasks
In addition to tasks based on attributes of nodes and edges, tasks can

e directed at topological features of the graph. Such tasks can focus
n the graph as a whole, or concern themselves with particular features
r subgraphs in more detail.

Fulcrums are articulation points in graphs connecting two compo-
ents of a graph and the removal of such a fulcrum would (most often)
ead to the generation of two disconnected components. Thus finding
ulcrums can be an important task as their removal can strongly
mpact a graph’s topology. In NAP [67], for example, fulcrum nodes
re identified based on their centrality. While standalone applications
o find fulcrums are rare, at least in our corpus of collected literature,
ore complex frameworks, such as VANTED [94] or Omix [122] can

generate visualizations aimed at finding fulcrums in biological network
visualizations.

A common task is finding groups. Groups can play an important role
in biological networks, as finding similar entities or grouping entities
semantically can help reduce the number of organization units to be
analyzed or visualized. Murray et al. [22] define the Grouping task as

Relationship task. There are several examples of applications, such as
lusterViz [153], that are tailor-made for the task of finding clusters

n a biological network, offering various cluster algorithms and side-
by-side views of the found clusters with additional statistics. Similarly,
the visualization Cruz et al. [137] focuses on the temporal evolution
of clusters in networks. A task that is also reflected in the specialized
taxonomies of Ahn et al. [201] and Kerracher et al. [202], e.g. the
analysis of Growh and Contraction of groups or as a Q4 task respectively.

ith MultiPiles [108] Bach et al. aggregate matrices by similarity to a
ustomizable degree, allowing interactive investigation of the effect of
bstracting the data.

Determining adjacency of nodes, i.e. finding neighbors of specific
odes is an equally common task. A prime example of this task is in
rotein–protein-interaction networks where the primary objective is to
ind neighboring nodes, i.e. proteins, that interact. This can be seen,
or example, in STRING [205] or Biolinker [111]. Fining neighbors
s also relevant for gene-regulatory networks [206] or heterogeneous
egulation networks [95,173], in which regulation is indicated by being

connected by an edge, analogous to protein–protein-interaction net-
works. Similarly to the finding of groups, determining neighbors often
eatures in addition to other tasks where it either plays a secondary role
r features alongside other tasks.

Lastly, we distinguished the task of finding paths. As described
n Section 6.2.3, paths are a series of edges connecting two nodes by
raversing at least one additional node. In practice, most applications

with an object focus on paths also aim at finding paths in a given
network. And just as in the path-object focus, finding paths is a par-
ticularly common task in metabolic pathways [49,94,188] and genome
graphs [124,191,207]. Thus, it is not surprising that a multitude of
asks, in more detail than just finding paths, are featured in the tax-
nomy by Murray et al. [22]. Specifically tasks about the Direction of

paths, the Causality of changes downstream in a path, or even if paths
orm Feedback loops. However, some protein–protein-interaction graph
isualizations like BioLinker [111] also feature pathfinding, to locate

interactions between two proteins.

6.2.3. Other complex tasks
There are of course other complex tasks, that are neither exclusively

based on attributes nor topology. Here, we describe these browsing,
overview, and graph comparison tasks.

As the primary browsing tasks, Lee et al. [204] mention the fol-
lowing of paths in given networks. For visualizations that feature
pathfinding tasks or a path object focus following a path is a very
intuitive task.

The overview task is quite a broad task category, encompassing
verything that does not focus on a single node, edge, or cluster but
nstead the graph as a whole. Given this wide-ranging definition and
15 
the general need for visualizations to represent complex processes,
many of the investigated papers feature some kind of overview element
(Fig. 2). The majority of tools opt to visualize networks using some
orm of node-link diagram (Fig. 2). Thus, many characteristics and

properties, like connected components or hubs can be identified purely
visually. Often cluster analysis and the additional visualization of its
results further amplifies this effect. In miRNet2.0 [71] different layouts
in combination with color are used to highlight different aspects of the
network to investigate the effect and regulation of miRNAs. There are
however also works that explicitly focus on giving an overview, with
ODGI [124] that aims to show the genomic variation in pangenome-
graphs, i.e. how genomes differ from each other on a genome level, at
an overview stage allowing to identify regions in which there is much
— or little — genomic variation. PaintOmics [148] on the other hand
uses an abstracted but otherwise conventional node-link diagram in
which each pathway represented by a single node in combination with
node colorings to give an overview over a set of pathways. Another
example is the visualization by Cruz et al. [137] which shows the
emporal evolution of clusters in a network in an abstracted overview

time curve, indicating the stability of a cluster over time.
A more specialized task is the one of graph comparison in which

several distinct graphs are compared. As the comparison of metabolic
pathways is of high interest in the domain, Murray et al. [22] also
describe Comparison task, based on Attributes of the graph entities. One
such example is Phylo.io [183] which was created explicitly to compare
ifferent phylogenetic trees using a side-by-side view. Cerebral [134]

on the other hand uses a combination of small multiples and coloring
to allow the comparison of multiple experimental conditions and their
effect on metabolic pathways.

7. Human–computer interactions in biological network visualiza-
tion

To perform the tasks outlined in Section 6, many visualizations
require interaction techniques transforming the static visualization into
non-static, interactive visualizations. Here we describe the commonly
sed graph interaction techniques identified in the taxonomy by Yi
t al. [16]. The specific interaction techniques are very general and in

many cases, the specifics of their implementation are strongly data and
task-dependent. We thus do not explicitly map them to our taxonomy
for network analytics (Fig. 2), but instead, point out the connections
to the described tasks and mention examples for the corresponding
interaction types.

7.1. Select

Select is one of the core and most common interaction techniques
n both general and network visualization as it helps users to keep track

of data items intuitively [16]. A very prevalent realization of this select
interaction in network visualization is the simple (cursor-based) selec-
tion of vertices or edges (see Fig. 7, (a)). One such example can be seen
in xiNET [167], in which users can hover over as well as click proteins
or their connecting links to reveal additional (attribute) information.
However, such selections of items can often be used in more advanced
ways, as well: Gernet [126] allows for clicking and dragging to select a
subset of the displayed entities. Fuijiwara et al. [195] provide a lasso
election tool for the same purpose. Alternatively, entities can be
elected using so-called search masks: Commonly, users can directly
elect target entities, such as proteins [111] or genes [208], via their

respective domain-specific accession identifiers. It is important to note
that selection techniques are rarely used in isolation. Instead, they are
often employed in conjunction with other interactive methods, such as
Explore or Abstract/Elaborate techniques to, for example, show detailed
attributes of nodes and links to better support particular attribute-based
tasks.
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Fig. 7. Human–Computer Interactions in Biological Network Visualization. (a)–(g) Examples for seven general categories of interaction techniques [16], i.e. (a) select, (b) explore,
(c) reconfigure, (d) encode, (e) abstract, (f) filter, and (g) connect. All hypothetical user interactions and changes are shown in blue.
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7.2. Explore

Exploration interaction techniques enable users to navigate varying
subsets of data entities, e.g., depending on the object-focus [16], nodes,
dges, groups, or paths. Exploration techniques are often associated
ith topology-based tasks and attribute-based tasks, such as finding the

et of neighbors adjacent to some node of interest, or locating a set
f nodes with a particular attribute value, respectively. As previ-
usly mentioned, exploration techniques are often employed in tandem
ith the select interactions. In BioLinker [111], for example, users can

request the database to load the selected protein and its neighbors
of interest by entering its identifier in a search box. This, in turn,
expands the current view with new entities and relationships. An
additional example is StemCellNet [208], in which users can input a list
f gene identifiers. The system will then return a list of genes matching
he given identifiers, from which users can select some central focal
ode for the network. A common standalone exploration technique in
iological network visualization is panning, which is used to navigate
he network’s 2D embedding [93,127,134,137,167,209] (Fig. 7(b)).

Generally, clicking and holding the right mouse button while dragging
the cursor, allows users to move the visualization canvas. This panning
technique is helpful as it allows layouts to render nodes off-screen while
still allowing their exploration.

7.3. Reconfigure

Visualization tools offer the advantage of having a human in the loop
to tailor the visualization to the researcher’s needs. This is primarily
achieved through reconfiguration interactions, in which the users can
change the spatial arrangement of the network’s representation to
btain different views on the same data [16]. PathwayMatrix [193] uses
djacency matrix visualization to present the binary relations between

proteins in a pathway. As the ordering of rows and columns influences
the perception of visual patterns, Deng et al. [193] offer various metrics
with which to (re-)order the matrix. This in turn, can reveal high-
evel patterns in larger pathways, such as sub-networks and clusters
f related proteins. For example, as shown in Fig. 8, proteins in the

same family form clusters when ordering the adjacency matrix by
16 
protein name. However, some proteins of different protein families
may serve the same or similar function within a pathway. When order-
ing proteins by similarity, not name, such patterns become apparent
nd can lead to potential discoveries. Thus, the reconfiguration of

matrix representations better supports topology-based tasks. In node-
ink diagrams, on the other hand, moving vertices in the graph is a
idely applied reconfigure technique; see, for example, Fig. 7(c). In

addition to the aforementioned topology-based tasks, reconfiguration in
node-link diagrams is also helpful in facilitating browsing tasks like
path-following. Users can interactively drag vertices around in Cere-
bral [134], whose initial placement is algorithmically informed. This
way, users can manually build a skeleton of important vertices that
better match their mental model. Alternatively, in ClusterViz [153],
users can explore clusters in biological networks in different orders by
sorting them by various attributes, such as score, size, or modularity.
Another reconfiguring technique is changing the algorithm underlying
the automatic graph layout altogether. Chang et al. [71] offer different
layout algorithms such as Force-Atlas, Fruchterman-Reingold, Circular,
tc., for better exploration of miRNA-centric interaction networks.
ragging nodes or switching layout algorithms, results in different
raph overviews to help us with different overview tasks.

7.4. Encode

While the reconfigure interaction maintains the data encoding, chang-
ing the encoding adjusts the visual representation, offering a different
view of the data Fig. 7(d) [16]. An example of such an encode interac-
tion is the on-demand switching of a biological network’s representa-
tion from an adjacency matrix to a node-link diagram. New et al. [110]
utilize this approach to communicate time-dependent changes in gene
co-expression networks, as shown in Fig. 9. The network is first repre-
sented as a matrix [110]. Brushing selections can then be performed,
to abstract a selected sub-graph into a hyper-node in the node-link
diagram. The resulting, simplified Level-of-Detail graph can show the in-
terconnections between groups of vertices. Other encoding techniques
have been used to provide alternative encoding representations of
the data items in the network. For example, Cerebral [134] provides
sliders for users to adjust edge curviness, label density, and group
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Fig. 8. Two different protein orderings in the RAF-MAP Kinase Cascade pathway [193].
Fig. 9. A 2D LoD graph created from brushed BTD belt selections to show correlations
among BTD structures [110].

label size to enable the user to find a proper encoding scheme that
best fits their research questions and tasks. NAP [67] allows users to
choose between various colors and shapes of edges and vertices. These
encoding techniques provide users with the opportunity to get a better
visual representation of the whole network, to help them with their
overview tasks.

7.5. Abstract/elaborate

Another group of techniques bundled under the term Abstract/
Elaborate includes a set of interaction interactions allowing the user
to view representations of the input network at different levels of
abstractions 7(e) [16]. In node-link diagrams, zooming interactions are
often supported to show attributes of the biological network which are
more apparent when changing the scale at which the network is dis-
played [38,67,93,126,127,134,173]. For example, Fujiwara et al. [195]
support zooming in the network view to display regions of interest
more clearly by reducing clutter and node overlap. Other approaches
use this approach to both declutter their visualization and to utilize the
created space by the zoom operation displaying additional information.
In Caleydo [149], for example, zooming into the heatmap visualization
displays text labels that would otherwise not be visible. Abstractions
often are a cornerstone to facilitate overview and browsing tasks.

Tool-tips are another commonly applied implementation of the ab-
stract/elaborate interaction. They provide detailed information about
17 
the biological network facilitating attribute-based tasks. In most appli-
cations, tool-tips are shown after hovering over or clicking on a vertex,
upon which a pop-up window with additional information is shown.
Examples of vertex tool-tips show its name [137,140,195], an associ-
ated gene annotation [126], or other biological information [40,210].
Other tooltips, like the ones in BioLinker [111], show information of the
hovered node and the statistics of its immediate neighbors (see Fig. 10).

7.6. Filter

Abstraction/Elaboration techniques change how the given data is
represented. In some cluttered visualizations, however, this is not
desired. Instead, the user may want to remove specific items outright.
This is facilitated by Filter interaction techniques. In general, a filter
shows data items that meet specific conditions, for example, to vertex
or edge attributes [16], as shown in Fig. 7(f). A prime use case for this
is protein–protein interaction networks, which often contain thousands
of protein species and protein–protein interactions, which, unfiltered,
pose a considerable challenge to be visually parsed and understood.
Jianu et al. [209] allow users to remove biologically uninteresting
proteins using extendable filters to simplify the visual representation
of the network. In MAPPS [140] users can filter the visualization
on pathway length. Other applications offer filtering with multiple
options. In StemCellNet [208], the filter options include filtering by
species, interaction types, co-expressions, and evidence. Additionally,
all unconnected vertices (post-filtering) are removed to avoid orphan
vertices cluttering the networks. Some applications also offer filtering
based on graph topology. Zhou et al. [211], for example, allow users
to simplify the network by filtering less important vertices or edges
based on vertex degree, betweenness centrality, or shortest paths. After
filtering nodes and edges by their attributes, users can better complete
attribute-based tasks.

7.7. Connect

Finally, we discuss Connect interactions. This interaction technique
highlights the related data items or shows hidden, but contextually rel-
evant, data items [16]. These techniques support topology-based tasks
such as finding neighbors and connecting edges. In biological network
visualization, we are often interested in related vertices and edges of
some selected entity. A common connect technique, in both node-link
diagrams and matrix visualization, is to show the neighbors of selected
vertices (Fig. 7(g)). Jianu et al. [209], for example, allow users to
click a protein in the exploration view, which then highlights both
the protein itself and its neighbors to establish a visual correspondence
between them. In NetWorkAnalyst [144], users can click on a vertex
to zoom in to see its position and interconnectivity within the current
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Fig. 10. Retrieving pathway information using dedicated focus+context interaction techniques [147].
subnetwork. This, in turn, allows users to better analyze the topology
of the subgraph surrounding the selected vertex of interest. In the work
of Cruz et al. [137], hovering over a vertex with the mouse highlights
other connected vertices. Fujiwara et al. [195] react to hovering over
a certain matrix cell with highlighting of the corresponding vertices
and edges in the 3D graph view in order to provide their anatomical
positions as reference. Lastly, a high-level connect technique that can
find paths between selected proteins is provided in BioLinker [111]:
users can specify the source vertex, target vertex, and the maximum
number of hops in between the source and target, which will then
return all possible paths under the given condition to support both
topology-based tasks and attribute-based tasks .

8. Application areas & existing tools

As different biological and medical sub-domains deal with differ-
ent data, they also deal with different research questions, and chal-
lenges [212]. Consider, for example, on one hand, metabolic pathways
analysis which may aim to discover possible drug targets by carefully
considering the directed relationships between metabolites, while also
considering the possible adverse side-effects on other connected path-
ways [188]. On the other hand, a researcher faced with protein–protein
and protein–gene interaction networks may be more interested in using
the graph to understand experimental results, by considering not only
the interconnectedness of entities but also their physical location in the
cell [134].

In this section, we aim to provide an overview of the major biologi-
cal and medical application domains and the properties of networks un-
der study. Specifically, we focus on the following, common application
domains: genetic regulatory networks, protein–protein interaction net-
works, metabolic pathways, multi-omic networks, gene (co-)expression
networks, and phylogenetic trees. However, we also briefly mention
some other areas in biology where networks are relevant. Here, we
provide an overview of the current, domain-specific visualization tools
available and to highlight their unique set of challenges and potential
areas of research to guide subsequent research efforts. A detailed
comparison of the tools would be difficult due to the sheer number
of tools that often tackle problems in a narrow subfield. Therefore, our
aim was to only give an overview of existing approaches. For some of
the more feature-rich and established tools, we provide a more detailed
description of their features and possible interactions. We refer our
readers to the original papers for detailed explanations of the individual
features, user requirements, and evaluation results.

8.1. Biological interaction networks

On the micro-molecular level, many of the processes can be de-
scribed as interactions between different biological agents, such as
genes, proteins, enzymes, or transcription factors. These interactions
can thus be described by different interaction networks, e.g. gene
regulatory or protein–protein interaction networks, and their study
opens up many possibilities to form and evaluate new hypotheses.
18 
Fig. 11. Node-link diagram of GeRNet [126].

8.1.1. Gene regulatory networks
Gene expression is one of the most central processes in biological

systems. Accessing information stored in the DNA, through transcrip-
tion and translation, affects nearly every biological reaction inside an
organism and is thus connected to a very complex set of regulatory
mechanisms. In order to model these mechanisms, gene regulatory
networks (GRNs) were developed. These are a specialized type of
biological interaction network, whose goal is to describe and gain
insight into how gene expression is regulated. When analyzing patho-
logical states of certain cellular processes, GRNs can thus contain
helpful information about how these processes are regulated in their
physiological state [213]. Additionally, they can reduce the amount
of experimental preliminary studies by providing computational entry
points for experimental biological research [213].

One example for the visualization of gene regulatory networks is
GeRNet [126]. GeRNet uses the two algorithms to infer gene regulation
rules and draws them in a force directed node-link diagram of a simple
graph (see Fig. 11). The vertices in this diagram constitute genes while
the edges are the inferred rules, with the type of edge being one of
six regulation types. On-demand the user can manually add rules and
vertices to curate the generated network (reconfigure). Some additional
approaches concerning gene regulatory networks are more analytical,
featuring time-series visualizations [206], while others include matrix
visualizations [121].

8.1.2. Protein interaction networks
While proteins are responsible for performing many of the central

tasks in biological systems, they often do not act as an isolated en-
tity but in conjunction with other proteins. Thus, when investigating
a protein’s function and role in the organism the need of knowing
which proteins might interact with the protein of interest arises. Such
knowledge can be extracted from protein–protein interaction networks,
which are networks representing the aforementioned interactions [68,
69]. Additionally such networks can be analyzed further to find the
more loosely defined modules, which are used to attribute larger-scale
cellular functions [70,214]. The main source of information regarding
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Fig. 12. An exemplary association network from the STRING homepage [205].

protein–protein interaction is generated in the wet lab using a wide
range of different techniques—a labor-intensive process. Thus in-silico
predictions of these interactions from a variety of different sources, for
example from protein structure, their phylogeny, or the corresponding
gene neighborhoods, have become increasingly more important [215].
Databases like the STRING [205] database, thus not only keep a record
of experimentally shown protein–protein interactions but also record
evidence levels indicating the reliability of the given interaction, i.e. if
there is experimental or only predictive evidence for a given type of in-
teraction. Producing meaningful visualizations of these dense networks
containing such differences in reliability poses an additional challenge
for analysis systems.

Indeed, STRING itself offers a system for the visualization of its
contents [205]. The user can query the STRING database for one
of the over 24.6 million proteins from over 5,090 organisms, which
is then shown with its association network as a force directed node-
link diagram of a simple graph (see Fig. 12, top). The query vertex
is then shown in red while the edge colors indicate different types
of evidence, whose detail can be explored via click interaction on
the edges (selection). In an interactive mode, all vertex positions can
be moved (reconfigure). Another option is to utilize k-means or MCL
clustering to generate a clustered graph in which colors signify cluster
membership and inter-cluster edges can be visualized by dotted lines.
Additionally, a set visualization shows the interactions of the query
protein with all interaction partners and its evidence levels sorted by
total score (see Fig. 12, bottom). As the STRING database, associates
this evidence with scores and links them to the corresponding entries,
these scores can then be used as a measure of confidence for a given
interaction. The composition of those scores can be seen in the click
interaction or in the legend accompanying the vertex link diagram. The
user can expand or restrict this network by changing a score threshold,
changing the number of vertices visualized in first or second-degree
neighborhoods, as well as the choice of interaction sources (filter).

Another such system, designed to visualize protein–protein inter-
action networks is Biolinker [111]. Biolinker allows to select proteins
from a large database and visualizes it and its interaction partners
as a force directed node-link diagram of a simple graph (see Fig. 13).
Here, vertex size is used to indicate the number of interaction partners
19 
(centrality), while the edge colors indicate types of interaction. The
main view can be filtered by selecting categories in the accompanying
table. Users can also select two proteins for which all possible paths
are then shown (connect). In order to gauge the trustworthiness and the
underlying evidence Biolinker features an auxiliary visualization show-
ing publications for each of the interactions featured in the main view.
Publications are shown as arcs, colored according to the respective
interaction type, and placed at the year of publication of the evidence.
The publications are also shown in the conflict matrix which indicates
if different publications record different interaction types for a given
protein (see Fig. 13).

In part, owing to the rather simple structure of protein–protein
interaction networks many visualization systems with different ap-
proaches exist for their visualization. There are approaches aimed
at visualizing the underlying geometry in PPI-Networks [175], infer-
ring PPI-Networks from existing data [216], showing node-link ego-
graphs [217] for comparing the similarity of PPI-Networks [218], or
approaches using matrix views instead of node-link diagrams [193].

8.1.3. Metabolic pathways
Knowledge of metabolic pathways and their reactions is important

for a multitude of research questions across domains, be it molecular
biology, biochemistry, or biomedical research. Thus, metabolic path-
way networks are among the most well known and most widely applied
biological networks types. Most molecular biologists or biochemists will
be familiar with static visualizations like Biochemical Pathways [219] or,
with added interactivity, ReconMap [42]. Additionally, databases like
KEGG [41], BioCyc [220] or Reactome [221], along with vast amounts
of data, also offer manually curated network visualizations.

As manually generated pathway visualizations cannot be tailored to
specific use cases automated approaches have been developed. These
automated approaches, however, often cause poorly readable layouts.
Recently different approaches have specifically targeted this drawback.
Metabopolis [49], for example, addresses this problem by utilizing
techniques employed in city planning to generate a more readable and
familiar layout of a clustered graph for automated metabolic pathway vi-
sualizations. This graph is shown in a schematic and orthogonal node-link
diagram. In detail Metabopolis only displays user-defined categories as
urban blocks and layouts them by solving a constrained floor-plan prob-
lem afterward intra- and inter-block connections are drawn finalizing
the visualization (see Fig. 14). Users of Metabopolis can also interact in
various ways with the visualization. They can, for example, reconfigure
the layout city blocks or select and connect start and endpoints of routes
which are then highlighted.

Moreover, metabolic network visualization plays an important role
in systems biology, where cellular metabolic processes are simulated to
gain insight into these processes. VisANT [222] is such a tool, purpose-
built for simulating cells, organisms, and their interaction. In the latest
iteration of VisANT particular emphasis was given to modeling and
visualizing interaction between different cells or event-complete, dis-
tinct organisms like bacteria. In general VisANT uses a bipartite graph
of metabolites and reactions, in a schematic and orthogonal node-link
diagram, to show the involved metabolic pathways. Additionally, in the
so-called metagraph, a clustered graph, organizational units, organelles,
or whole bacteria, can be aggregated in so-called metanodes (encode,
abstract/elaborate). Users can collapse or expand these metanodes on de-
mand (reconfigure) Between these metanodes, expanded or aggregated,
exchange-vertices indicate metabolite exchange between the respec-
tive organelles/organisms (see Fig. 15). VisANT, however, is not the
only platform offering systems biology functionality, with many tools
offering avenues to generate hypotheses (e.g. [210,223]).

Another task, common for metabolic pathway networks, is the
comparison of different experimental conditions or the comparisons of
similar pathway segments in the grand ensemble of metabolic path-
ways. This task introduces an additional challenge for graph visual-
izations, as they require visualization to facilitate graph comparisons.
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Fig. 13. Main view of Biolinker, Conflict matrix and literature arcs of Biolinker [111].
Fig. 14. Metabolic pathway visualization in Metabopolis [49].

Fig. 15. Visualization of two interacting bacterial metabolic pathways in VisANT [222].
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Entourage [188], was developed to compare different sub-graphs of
the complete metabolic pathway graph as laid out by KEGG. They
mainly target the process of drug design or drug repurposing. Their
tool aids in this effort by offering a linkage of compounds/drugs in a
given sub-pathway to other sub-pathways in which a given element
appears, intelligently showing the surrounding metabolic processes.
Cerebral [134] on the other hand focuses on the visualization of many
different conditions for a given metabolic network. The primary use
case of Cerebral is to compare multiple experimental conditions, like
time points in a time course experiment, in automatically generated
but familiar, e.g. sorted by cellular location, and layouts.

Due to the importance of metabolic pathways, many tools offer
the visualization of such metabolic pathway networks (e.g. [122,140]).
Also, many tools for biological networks feature add-ons allowing the
visualization of metabolic pathways (e.g. [224]). Additionally, some of
the general-purpose network visualization frameworks like yEd [225]
and Cytoscape [226] can be used to draw metabolic pathways (e.g.
[189,190]).

8.1.4. Multi-omics networks
For specific biological experiments or research questions, individual

analysis of specific classes of molecular-biological entities can play a
pivotal role. Considering a more comprehensive set of molecule classes
for analysis, however, might be more appropriate for more complex
research questions, as the actual biology oftentimes does not allow for
a simplified view restricting itself to the analysis of a single omics-
type. Thus multi-omic network models, networks combining more than
one specific class of molecular-biological entities, and corresponding
visualizations were developed to aid in such tasks. While biomedical
research questions are one of the primary focus areas of multi-omics
research [227–229] other biological domains, for example phylogenet-
ics [230] or plant physiology [123] profit from multi-omics approaches.
One key challenge in multi-omics visualizations is the integration of
heterogeneous data sources into a coherent model. A possible approach
is the use of multi-layer networks in which each data source corre-
sponds to a distinct layer of the network. OmicsNet [95] features the
application of such a multi-layer layout. Using gene, protein, miRNA,
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Fig. 16. Multilayernetwork of Transcription factors, proteins and miRNAs (top to
bottom) in OmicsNet [95].

and metabolite lists, users can construct up to three networks, of which
two are used to add additional information to the main network,
generating a multilayer-graph. This, e.g. allows for the generation of
a protein–protein interaction network, in which transcription factor
and miRNAs targeting proteins can be visualized as additional layers
(Fig. 16).

As this kind of multi-layer visualization often introduces the need
for 3D visualizations it also introduces its drawbacks [51,197]. Thus
other multi-omics applications aim to integrate the different omics
layers in a two-dimensional visualization [148,194]. PaintOmics 3 [148]
for example, can visualize complex experimental setups involving mul-
tiple types of omics-data—namely transcriptomics, proteomics,
metabolomics, modifications, and regulatory elements like siRNA and
transcription factors. Given a set of matching omics measurement-sets
PaintOmics 3 generates an overview graph (a force directed node-
link diagram of a simple graph), in which each vertex corresponds to
a pathway of the manually curated metabolic pathways from KEGG
(encode). Each pathway can be selected individually such that the
manually generated pathway networks from KEGG (a schematic node-
link diagram) are displayed (abstract/elaborate). Inside this individual
pathway, each omic type measurement is mapped to its corresponding
pathway vertex as a colored bar (see Fig. 17).

In general, many frameworks are not tailored to a specific type
of biological interaction network but can, in fact, be used to ana-
lyze a wide array of different networks and use cases. One of those
frameworks is the popular VANTED framework [93]. VANTED offers a
combination of manual and automatic layout functions (e.g. schematic
node-link diagram as seen in Fig. 18) and features a complete cus-
tomization of vertices and edges. Experimental conditions, for example,
can be mapped as bars, or as color, to the vertices allowing differ-
ent analysis approaches (encode) (see [93]) An additional feature of
VANTED is the openness of the system allowing the integration of
most omics-types and for many use cases, including systems biology
simulations and experimental analyses. Additionally, many of the more
general-purpose tools, like Cytoscape offer add-ons to visualize generic
biological networks (e.g. [153]).

8.2. Biological networks based on genomic variations

While different species can share large parts of their genetic code,
the differences in this code determine the particular species. However,
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the genetic code of two individuals of the same species is also not
exactly the same: the differences determine the individual phenotype
(i.e. observable traits of an organism like sex or eye color). Therefore,
genomic variations are studied intensively. These variations include the
deletion, insertion, inversion, and repetition of (usually smaller) parts
of the genetic code. A graph can be constructed that captures all this
information about the variations and allows to visually analyze them.
Common tasks include the analysis of shared parts of the genetic code
as well as studying the differences that lead to specific traits.

Network-based visualizations of genomic variation are, thus, useful
for the analysis of assembly graphs and genomic variation graphs. The VG
toolkit [232] provides a common data model to describe such variation
graphs built from multiple variants of a DNA sequence. As the name
implies, the Sequence Tube Map [191] tool uses a tube map metaphor
for visualizing such variation graphs, where all sequences are shown as
parallel tracks and homologous regions are marked. The Bandage [207]
tool results in more compact layouts, as it does not adhere to the
strict ‘‘train track’’ metaphor but allows for arbitrary, curved layouts.
ODGI [124] includes a similar visualization. It is optimized for scala-
bility and can create layouts for whole pangenome graphs. The recent
review by Eizenga et al. [231] provides further details on pangenome
graphs and compares the abovementioned visualization approaches
(Fig. 19).

A Quantitative Trait Locus (QTL) is a region of DNA on a chromosome
that is associated with a specific phenotypic trait that is measured on
a continuous scale (e.g. the growing height of a plant or human skin
color). Such traits are usually determined by two or more genes. Further
information can be found, e.g. in the book by Rifkin [233]. To facilitate
the analysis of QTLs, specific tools for the visualization of QTL networks
have been developed. A common visualization of QTL interactions
is to draw edges between the sequences of the respective chromo-
somes, as for example used by QTLNetwork [234], QTLNetworkR [235],
or solQTL [236]. However, this simple visualization often does not
capture the full interaction network. Jiang et al. [237] presented a
computational model for inferring QTL-QTL interaction networks and
visualized them as simple node-link diagrams, similar to the interaction
network tools discussed in Section 8.1. The Reveal tool by Jäger et al.
[238] visualizes the genes associated with the QTLs as vertices of
a force directed node-link-diagram (simple graph). Edges signify single
nucleotide polymorphism (SNP) pairs in two genes that significantly
influence the expression of another gene (see Fig. 20). The tool was
originally developed for the BioVis Challenge 2011, which focused
on QTL expression data [138]. For this challenge, Paquette and Lum
clustered SNPs and visualized the results as node-link-diagrams using
the Iris tool (Ayasdi, Inc.) [138]. Here, the vertices represent clusters,
which are connected by edges if they share at least one SNP.

8.3. Phylogenetic trees

Trees are acyclic graphs, that is, two vertices are connected by
exactly one edge. In biology, phylogenetic trees are one of the most
common uses of trees. In general, phylogenetics is concerned with the
study of the interrelationship of different species. Today, phylogenetic
trees that show the relatedness of different species are often constructed
based on genomic information, e.g. by comparing differences in the
sequence of proteins or genes. These trees are usually visualized as
dendrograms, where the leaves are the species, the inner vertices are
the (hypothetical) ancestors, and the distance between vertices shows
the evolutional difference. Besides the analysis of different species,
phylogenies are also used to derive taxonomies of different species.
The online tool Lifemap by de Vienne [185] allows us to interactively
explore the tree of life, i.e. the taxonomy of all known species provided
by the NCBI. Another example is the NextStrain project [184], which
for example offers an interactive visualization of the phylogenetic tree
of all currently known SARS-CoV-2 virus variants. The FastTree 2 tool
by Price et al. [239] can compute phylogenetic trees for hundreds
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Fig. 17. Multilayernetwork of Transcription factors, proteins and miRNAs (top to bottom) [148].
Fig. 18. Metabolic pathway visualization [93].
of thousands of samples. The results can be visualized using various
applications such as the online tool iTOL [181], which for example
offers radial and linear layouts.

Besides such relatively simple tools that only show the phylogenetic
tree in an interactive view, more advanced visual analysis tools have
been proposed, which are tailored to specific application cases. One
example is TreeJuxtaposer by Munzner et al. [240], which allows for the
comparison of the structure of large phylogenetic trees with hundreds
of thousands of vertices. The trees are visualized as dendrogram and a
specialized focus-and-context technique is used to ensure the visibility of
differences. Similarly, the online tool Phylo.io by Robinson et al. [183]
also uses juxtaposition of dendrograms for a comparative visual analy-
sis. Another example is the metagenome analyzer MEGAN6 by Huson
et al. [182], which also offers a layered dendrogram view that shows
the extracted phylogenies. It can use data from a given taxonomy —
e.g. NCBI — to construct the tree. To compare the number of different
species found in a metagenomic sample, the leaf vertices of the tree
encode the number of reads for that species as a bar chart (see Fig. 21).

8.4. Other biological networks

In addition to the most common biological networks mentioned
above, there are other examples such as brain networks, ecological
networks, and networks that capture the topological structure of high-
dimensional data of single cell RNA-sequences. Although our survey
does not focus on such networks, we will discuss some exemplary
applications for these types of biological networks for the sake of
completeness.

A brain network is a network of neurons that represents the func-
tional connectivity of neurons in the brain, as measured by various
methods such as functional Magnetic Resonance Imaging (fMRI), elec-
trophysiological measurements, or calcium imaging in humans and
model organisms. The brain network is visualized to understand its
system and to formulate and validate hypotheses. In particular, the
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brain network is dynamic and has a large and dense structure. There-
fore, hybrid visualizations have been proposed to handle these features
effectively. Since animations and small-multiples do not scale to large
networks in some tasks, Bach et al. [108] proposed a hybrid visu-
alization method to summarize dynamic features by displaying them
as so-called multi-piles, that is, piling adjacency matrices, enabling
detection of high-level temporal patterns (see Fig. 22(a)). In addition,
various visualization techniques are used, such as node-trix [109] (see
Fig. 22(b)), which utilizes a hybrid matrix-node-link layout, a visual
metaphor called NeuroLine [125], and edge bundling [241] to an-
alyze large-scale and locally-dense structures of the brain. It is also
effective in supporting the comparison and exploration of networks by
combining machine learning with interactive visual interfaces [195].

Ecological networks represent food webs and interspecies interactions
in an ecosystem. Although these networks usually have dynamical
properties, they are more difficult to measure and quantify than those
in neuroscience since they are spatiotemporally extensive and difficult
to control experimentally. Therefore, it is more important to combine
visualization techniques and visual analysis approaches with math-
ematical methods for the calculation of interspecies interactions in
ecology [242].

Finally, in the field of biology, sc-RNAseq has made it possible
to examine the sequence information from individual cells with opti-
mized next-generation sequencing technologies, causing an information
explosion. In addition to mapping and comparing gene expression at
the single-cell level, biological networks of cell differentiation can be
visualized by topological data analysis (mapper) that analyzes high-
dimensional data structures as a graph [243]. Because of the need
to interpret graphs along with heterogeneous data, Zhou et al. [244]
presented the Mapper Interactive framework, which combines mapper
and attribute data through an interactive visualization system.

While the above are just a few selected examples, they show that
there is an increasing need for applications that integrate novel data,
analytical models, and visualization techniques to facilitate the visual
analysis of biological networks.
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Fig. 19. Genomic variation graph visualizations from different applications: (a) Ban-
dage, (b) ODGI viz, (c) VG viz, (d) Sequence Tube Map. The gray arrows highlight the
correspondence and scalability of the different approaches.
Source: Image source: [231].

Fig. 20. The Reveal tool derives gene association graphs from eQTL data and visualizes
them as node-link diagrams.
Source: Image source: [238].

9. Research challenge and discussion

The outlined Graph Models, Graph Analysis Methods, Network Visual-
izations, as well as Graph Analysis Tasks and their Interaction Methods
make up the interconnected building blocks of the information vi-
sualization pipeline [33] underlying biological network visualizations
across domains (Fig. 2). While the discussed exemplary applications
make the importance of these building blocks clear, individually these
cannot shed light on the overall state of the larger field. Hence, as
discussed previously, all collected tools and papers were systematically
collected from relevant journals, filtered, and categorized within our
developed taxonomy. Based on these findings (Fig. 2), as well as
23 
Fig. 21. Screenshot of the comparative phylogenetic tree visualization offered by
MEGAN6.
Source: Image courtesy of D. Huson.

Fig. 22. (a) Screenshot of the MultiPiles application by Bach et al. image from [108].
(b) NodeTrix visualization of the brain network by Yang et al..
Source: Image from [109].

individual observations filtering and reading this corpus of literature,
we identify several open research opportunities of potential interest to
both the communities of network and information visualization, as well
as the many subdomains that make up biological network analysis and
visualization.

9.1. Beyond schematic and straight-line node-link diagrams

Our collection of papers (Fig. 2) indicates that most biological
graphs are either (manually) drawn schematic representations, as seen
in NeuroLines [125], ODGI [124], or Sequence Tube Maps [191], or
drawn as force-directed node-link diagrams, as seen in miDerma [245],
xiNET [167], or DORMAN [154]. This can likely be attributed to (i) the
computational complexity and poor scalability of more advanced draw-
ing algorithms, such as octo/rectilinear or layered layout algorithms,
(ii) their high availability and ease of implementation in common graph
visualization tools and libraries, and (iii) the subjective preferences of
domain experts for these schematic representations, as biologists and
biochemists prefer these manually-created, octo/rectilinear layouts that
they have grown familiar with after years of use [41,42].

Although the force-directed layout algorithm is considered one of
the more scalable approaches, its layouts become harder to inter-
pret with increasing graph density and size [12], forming so-called
‘‘hairballs’’ [15]. This deterioration of visual quality and readability has
been noted and measured, not only using quantitative graph aesthetic
metrics, such as the number of edge crossings [13] or edge–angle-
ratios [246], but also empirically evaluated in several comparative,
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quantitative user studies [192,247]. Generally, it would appear as
though node-link diagrams are, in comparison to, for example, adja-
cency matrix representation, more sensitive to the size and density of
the input graph. Most likely this is owing to only indirectly optimizing
important graph aesthetic metrics [12] which in turn impact user
performance [248,249].

Beyond their larger sizes and higher densities, many biological
networks also feature node groupings, based on their cellular loca-
tion [134], (predicted) function [135], biochemical pathway asso-
ciation [188], or some data-driven clustering [250]. Force-directed,
straight-line node-link diagrams, beyond node attribute encodings, do
not effectively allow such groups to be visually discerned. Indeed, to
effectively visualize such group structure, a plethora of different visual
relationships between graph topology and node groupings, and visual
encodings of said group structure are available [20,21]. At least within
he context of biological network visualization, these options seem to
ave not yet been effectively explored and utilized.

Overall, we see ample scientific opportunity in the development of
iological visualization approaches and tools beyond domain-standard,

hand-drawn schematic representations or commonly available force-
directed node-link diagrams. While the former may always play a part
n tools aimed at domain experts, more effective alternatives are avail-
ble For example, radial layouts offer advantages for communicating
roup structure and could be used more frequently for such purposes.
lternatively, given the large quantity of meta-data associated with
oth nodes and edges, application-specific hybrid approaches (Fig. 2)
ould allow for a more effective visual exploration of networks and the

multivariate data attached to them [19].

9.2. Incorporating uncertainty in network visualizations

Uncertainty can arise at many stages in biological network visu-
lization, from data collection to the conducted automated numerical
nalyses [251]. Especially important are the uncertainties and weights
ttached to networks obtained from online knowledge graph reposito-

ries, such as KEGG [41] or Reactome [56], as these graphs, integrated
ith newly collected experimental data, often form the basis of biologi-

cal network visualizations. However, while topology is naturally always
ommunicated in such applications, the uncertainties and weights often
ttached to such graphs’ edges are commonly ignored for simplicity.
ven outside of the context of network visualization, the visualization
f uncertainty remains uncommon [252], despite an understanding that
t can improve awareness, analysis results, and thrust [253]. Instead,
he various interactions of these networks are often depicted as de-

terministic and equal, even though this may not be the case. Some
approaches, such as STRING [205], do include these uncertainties in
heir visualization, but do so only as a filter applied to the input data.
ere, we see ample opportunity for future work, as the visual commu-
ication of this information could provide more insight into the various
iological networks under study. Care, however, must be taken when

implementing visualizations of uncertainty, as inappropriate or poorly
designed implementations may cause misunderstandings or confusion.

9.3. Incorporating graph analysis in network visualization

While we found many visualization tools designed for a variety
of different domains, types of graphs, and analysis goals, only few
employed or supported numerical graph analysis (Fig. 2). The most
ommon quantitative analysis supported by biological network visual-
zation tools was the identification of (node) clusters. As discussed pre-

viously, looking at these papers in closer detail, clustering is specifically
mployed to provide

1. a means of organizing the network’s visual representation, com-
monly correlation or adjacency matrices, as seen in PathwayMa-
trix [193] or Kiwi [139], in order to guide users to biologically
meaningful parts of the data,
 c
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2. a means of simplifying a network’s visual representation, such
as the coloring and grouping of nodes, e.g. Cruz et al.’s visu-
alization of dynamic time-series data [137], the breaking up
of a graph into simpler sub-components, as seen in Cluster-
Viz [153] or New et al.’s visualization of dynamic co-expression
data [110], or the bundling of edges in node-link diagrams,
e.g. Lambert et al.’s visualization of metabolic networks [147],

3. a mechanism for data-driven hypotheses generation, as seen in
Caleydo [149] and Mapps [140].

Even straightforward and comparatively simple graph descriptive
etrics, such as vertex centrality, or graph density were surprisingly
ncommon (Fig. 2. When utilized, these metrics are primarily used

either for the straightforward ranking/filtering of entities [39,254] and
clusters [69,109], or the visual highlighting of nodes [40], to guide
omain expert users to regions of potential graph-theoretic, and po-

tential substantive, interest. More involved or complex graph analysis
approaches, with the possible expectation of motif identification, are
even less common, likely owing to the complexity of implementation.

Perhaps because of the lack of more advanced quantitative anal-
ysis approaches, most visualization tools surveyed appeared to be
designed for exploratory analyses and hypothesis generation. Indeed,
only very few tools were designed with hypothesis verification explicitly
n mind. Two key examples that were, however, are MAPPS [140] for

edge prediction in metabolic pathways, and VANTED [94] for motif
dentification in — omics networks. Both are positioned as integrated

visualization and analysis platforms to allow domain experts to both
generate as well as (statistically) validate topological and substantive
hypotheses.

This lack of more advanced topological analyses, in our opinion,
rovides an opportunity for the field of biological network visualiza-

tion. While, many visual tools are, and will continue to be, needed
for the straightforward visual exploration of biological networks, we
also see value in including more sophisticated analysis techniques, such
as edge prediction, motif identification, or graph comparison, as such
approaches could allow for both a complete generation and verification
of domain expert hypotheses.

9.4. Towards better (visual) network comparison

As shown earlier, network similarity is an analysis metric not used
often in the collected set of papers. Similarly, only a few tools support
he graph comparison task. However, since experimental data collected

in biology is often heterogeneous, researchers would like to com-
are [48,255], for example, the similarity of biochemical (reaction)

topologies across different databases [111], individuals/samples [195],
biological compartments [125], pathways [140,188], time points [137,
206], or experimental conditions [134] in order to investigate potential
solutions for research questions, such as drug target identification.
Outside of metabolic pathway visualization, graph comparison as a task
is even less supported, even though visually comparing gene regula-
tory networks or protein–protein-interaction networks are biologically
relevant application areas.

A number of visual approaches to (graph) comparison present them-
selves. Two or more (sub)graphs can be compared through juxtapo-
ition, partitioning, or superimpositioning [21,256]. Within the col-

lected set of literature, most modern tools opt for a simple side-by-side
juxtaposition of (sub)graphs, as seen in Cerebral [134]’s visualizing
of graphs across experimental conditions. An approach that utilizes
oth networks similarity and supports graph comparison is the MultiPiles
pproach by Bach et al. [108]. Here the networks in their matrix

representation are grouped into piles. A cover matrix — a representation
of the whole stack — acts as a visual representation of all matrices,
by displaying different metrics of the pile. MultiPiles is joined by
ther matrix based approaches [109–111,195]. Other approaches, with

the exception of DynoVis [40], do not utilize similarity metrics when
omparing networks.
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This indicates two key open challenges and research opportuni-
ies in the visual comparison of graphs. First, as outlined earlier,
here is clearly a gap in the analysis methods available in network
isualization tools. Especially noteworthy is the lack of graph compar-
son tools, such as the previously discussed DeltaCon or Cut Distance
easures (Section 4.3). Second, most visual graph comparison ap-
roaches identified here, make use of interchangeable or juxtaposed
djacency matrices. For one, non-matrix-based visualizations could
lso be investigated. Additionally, non-juxtaposition or interchange-
ble approaches present themselves for future research. In addition

to the gap in visualization techniques the gap in specific application
domains becomes apparent—besides general purpose frameworks like
VANTED [93,94], there appears to be little support for visual graph
comparison in protein–protein-interaction-networks, genomic variation
graphs, or multi-omics networks. Multi-layer networks could be used to
facilitate a less side-by-side-centric approach to comparison.

9.5. Provenance and user trust

Related to the aforementioned challenges of uncertainty as well as
provenance visualization is the question of user trust, i.e. the degree to
which a user trusts either the information presented or the conclusions
they reach [257]. Indeed, there is increased appreciation and awareness
of the importance of trust in visualization and the factors that influence
t, such as the accuracy, currency, completeness, objectivity, validity,
nd predictability of data presented [258]. Awareness of trust is es-
ecially important when users are expected to evaluate or work with
utomated (AI/ML-based) analysis methods. Visualizations that aim to
xplain such automated (AI/ML-based) methods’ inner workings and
esults to increase user trust in such methods are currently gaining a
ot of attention [259,260].

As discussed previously, the application of automated (topological)
nalysis methods within the context of (exploratory) biological network
isualization is still in its infancy. However, their inclusion would
lso bring the challenge and opportunity of effectively communicating
hese methods’ inner workings and results to domain experts, ensuring
igher levels of user trust. An integrated system with faithful data and
isual representations could allow users to visually probe and explore
he limits of their data and analysis reliability, perhaps coupled with
rovenance analysis, in order to improve user trust.

9.6. Dynamic biological network visualization

Dynamic network visualization focuses on the visual communica-
tion of a network’s topological evolution over time. While the topic
of dynamic network visualization outside of the biological context has
already received a fair amount of attention [261–263], the visualization
of dynamic biological networks is still in its infancy. While some
xamples hereof exist, such as Kuijper et al.’s [40] DynoVis framework

for the visualization of dose-over-time effects in biological networks,
Perkins and Daniels’ [206] efforts to visualize dynamic gene expression
ata, or Hartman and Schreiber’s [46] work on visualizing metabolic

models.
We see ample opportunity for future biological and biochemical

network visualization research to embrace the challenge of making
sense of time-dependent evolution dynamics. Taking inspiration from
the work of Beck et al. [262], a multitude of possible approaches
present themselves, grouped within animation and timeline-based tech-
niques, i.e. animated and static representations respectively. Developers
and researchers of biological network visualization tools could take
inspiration from existing approaches, such as Bach et al. [108] Small
Multiples approach which opts to visualize dynamic networks as an
interactive stack of adjacency matrices, or Peng et al.’s [264] DMNEVIS
framework which opts to split the various aspects of dynamic networks
nto separate views in a larger interactive dashboard.
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Biological networks, depending on the particular context, bring
ith them very particular challenges that require careful considera-

ion. This includes, for example, multivariate (and dynamic) attributes
ttached to both nodes and edges [19], such as gene expression fold
hanges [265], labels of metabolites and reactions [154], or the database
rigin and type of a particular protein–protein interaction [111]. Many

possible solutions to this well-known problem have been put forth [266]
Additionally, within the context of multi-omics data integration and
nalysis (Section 8.1.4), a domain expert may be faced with so-called
ultilayer networks [51], in which a network is comprised of multiple,

eparate inhomogeneous omics networks [148,227,228]. Tackling the
visualization of dynamic biological networks will require close col-
laboration between network scientists, bioinformaticians, and domain
experts alike to ensure such networks are visualized in a user and
task-oriented manner.

10. Conclusions and limitations

Based on Card et al.’s [33] visualization pipeline, outlined and
summarized the various components that make up biological network
visualization, i.e. (i) its underlying Graph Models, (ii) the concrete Graph
Analyses that a user might perform, (iii) the various Graph Models
approaches, and (iv) the abstract Graph Analysis Tasks, which in turn
motivate (v) the provided methods of Human–Computer Interaction,
which are motivated by (vi) particular Application Areas. In order to
understand the current state of the field, we collected frequently used
graph analysis approaches, visualization techniques, abstract graph
analysis tasks, and interaction strategies from a large body of systemati-
cally collected literatureTasks. Based on this categorization of literature,
we identify six outstanding challenges in the field of biological network
visualization, which outline.

1. the opportunity to move beyond schematic and straight-line
node-link diagrams in order to embrace powerful alternatives
that exist,

2. the challenge of incorporating uncertainty in biological net-
work visualization frameworks and tools, be they measurement,
statistical, or inherent types of uncertainty,

3. the potential of incorporating sophisticated graph analysis tech-
niques that go beyond straight-forward descriptive metrics,

4. the gap in (visual) network comparison tools, which allow users
to effectively analyze the differences and similarities of networks
across time points, experimental conditions, or samples,

5. the possibilities of keeping track of provenance and user trust
to better communicate how certain findings have been reached,
and finally

6. the still relatively unexplored topic of dynamic biological net-
work visualization which visually describes the temporal topo-
logical evolution of biological networks.

This introduction to biological network visualization and our iden-
tification of outstanding challenges should, however, not be viewed as
exhaustive. Several topics could not be covered or fell outside of the
scope of this paper, such as community detection algorithms and their
application to biological networks [267]. Additionally, the scalability
f the various visualization and analysis approaches would justify a
ollow-up survey in and of itself.

Nonetheless, in order to address the identified outstanding and
multifaceted challenges, network scientists, bioinformaticians, and do-
main experts will need to work closely together. This points toward an
exciting set of future opportunities for collaborative research.
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Appendix. Approach to collect papers in this STAR

First, we fetched papers relevant to biological network visualization,
y utilizing various journals’ APIs in conjunction with logical search
n paper content, keywords, and citations. On the one hand, to find

surveys from the last 20 years, we utilized the following query: (‘‘visu-
lization’’ or ‘‘visualization’’ or ‘‘visual computing’’ or ‘‘visual analytics’’)
nd (‘‘graph’’ or ‘‘network’’ or ‘‘pathway’’) and (‘‘protein-protein interac-
ion’’ or ‘‘Signal Transduction Networks’’ or ‘‘gene expression’’ or ‘‘gene
o-expression’’ or ‘‘gene regulatory’’ or ‘‘gene regulation’’ or ‘‘multivariate’’
r ‘‘metabolic’’ or ‘‘metabolomic’’ or ‘‘interactomics’’ or ‘‘multilayer’’ or
‘multi-layer’’ or ‘‘biology’’ or ‘‘biological’’) and (‘‘review’’ or ‘‘survey’’
r ‘‘state of the art’’ or ‘‘overview’’). On the other hand, for tools and
pplication papers from the past 10 years, we utilized this query: (‘‘visu-
lization’’ or ‘‘visualization’’ or ‘‘visual computing’’ or ‘‘visual analytics’’)
nd (‘‘graph’’ or ‘‘network’’ or ‘‘pathway’’) and (‘‘protein-protein interac-
ion’’ or ‘‘Signal Transduction Networks’’ or ‘‘gene expression’’ or ‘‘gene
o-expression’’ or ‘‘gene regulatory’’ or ‘‘gene regulation’’ or ‘‘multivariate’’
r ‘‘metabolic’’ or ‘‘metabolomic’’ or ‘‘interactomics’’ or ‘‘multilayer’’ or
‘multi-layer’’ or ‘‘biology’’ or ‘‘biological’’) and (‘‘tool’’ or ‘‘application’’
r ‘‘software’’). Second, we screened the collected body of literature
o classify papers into highly, intermediately, and hardly relevant to
he topic at hand. Note that duplicated works, such as a conference
aper also published as a journal one, were removed. Third, for papers
hat are categorized as highly relevant, an annotation procedure was
onducted according to a pre-discussed table, which contains features
f the components in our survey (Fig. 2).
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