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ABSTRACT

Astronomers have been observing blazars to solve the mystery

of the relativistic jet. A technique called TimeTubes uses a 3D

volumetric tube to visualize the time-dependent multivariate ob-

served datasets and allows astronomers to interactively analyze

the dynamic behavior of and relationship among those variables.

However, the observed datasets themselves exhibit uncertainty due

to their errors and missing periods, whereas periods interpolated

by TimeTubes result in a different type of uncertainty. In this paper,

we present a technique for ameliorating such data- and mapping-

inherent uncertainties: visual fusion of datasets for the same blazar

from two different observatories. Visual data fusion with Time-

Tubes enables astronomers to validate the datasets in a meticulous

manner.
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Figure 1: Animated scatterplots: A conventional way to vi-

sualize a time-dependent multivariate blazar dataset [10].

1 INTRODUCTION

Astronomers have been observing blazars to solve the mystery

of the relativistic jet ejected from the central black hole of an ac-

tive galactic nucleus [1]. Their goal is to analyze time-dependent

multivariate observed datasets for extracting universal patterns

in the trajectory of the object in polarization parameters, which

may correlate with the intensity and color variation. However, the

commonly used animated scatterplots, as shown in Figure 1, suf-

fers from visual clutter and low interactivity. Thus the limitations

compromise astronomers’ ability to carefully scrutinize the original

dataset.

Our previous study [20] presented a new visualization method,

termed TimeTubes, which allows astronomers to analyze the dy-

namic behavior of and relationship among themultiple time-varying

variables geometrically by visualizing a dataset as a 3D volumetric

tube (see Section 3). TimeTubes indeed enables astronomers to

communicate effectively with these datasets. Accordingly, some

new behaviors of blazars have been found based on this method

and reported in [19].

In this paper, we improve the technique to help astronomers

analyze datasets more effectively and obtain more information at

one time by incorporating a novel mechanism, visual data fusion,
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into the previous 3D visualization. By visually fusing into the

originally targeted dataset, another dataset for the same blazar

from a different observatory, TimeTubes can ameliorate two types

of uncertainty, which are not mainly focused on in the previous

work [20]: data-inherent uncertainty, which arises from errors and

missing periods in the dataset, and mapping-inherent uncertainty,

which arises as a result of interpolationwhen TimeTubes transforms

the data into a continuous geometry. This visual data fusion enables

astronomers to validate the datasets in a meticulous manner. We

also discuss the new kinds of findings that are enabled by the latest

version of TimeTubes. Note that this paper is an extension of our

previous poster [16].

2 RELATEDWORK

We briefly review related research on time-dependent data visual-

ization, uncertainty visualization, and visual data fusion.

2.1 Time-dependent data visualization

Various techniques have been developed for visualizing time-

dependent data, some of which have been extended to deal with

multivariate data. For example, Bach et al. [2] developed Time

Curves, which is a general approach that visualizes time-dependent

data. In this approach, data similarity is naturally expressed by

folding a timeline. ThemeRiver, which was proposed by Havre et

al. [9], depicts thematic variation of documents over time using

a smooth stacked-graph layout. Storyflow, which was developed

by Liu et al. [13], improved ThemeRiver by enabling it to visualize

storylines legibly.

In addition, 3D visualization techniques have been developed

for visualizing time-dependent multivariate data. The Great Wall,

which was proposed by Tominski and Schulz [18], visualizes spatial-

temporal data with reference to 2D geographical space and 1D linear

time. To express time variation, Gruend et al. [7] expanded parallel

coordinates into 3D space.

Though these methods treat multivariate data, they do not pro-

vide an optimal way to explore datasets in an astrophysics context.

2.2 Uncertainty visualization

Uncertainty visualization remains one of the major scientific visu-

alization research problems, as noted by Johnson [11] and Fujishiro

et al. [5].

Error bars are commonly used to express uncertainty caused by

errors in statistical datasets [14]. Li et al. [12] visualized uncer-

tainty in astrophysical data, using an elliptical metaphor to handle

uncertainty in a way similar to TimeTubes. Moreover, glyph- and

ribbon-based uncertainty visualizations were presented by Sanyal

et al. [15]. Feng et al. [4] used density plots to visualize uncertain

multivariate data.

2.3 Visual data fusion

Various approaches to data fusion have been developed mainly in

the database [3] and the multisensor domain [8].

A few approaches to data fusion have been developed in the

visualization domain, but composite visualization techniques can

be expanded to visual data fusion. Senay and Ignatius [17] proposed

a set of rules for forming composite visualization techniques from

Table 1: Representative time-varying variables for observed

blazars.

Variable Description

Flx(V ) Observed intensity of blazar

Q/I Linear polarization component (0 or 90 degrees)

E Q/I Error on Q/I
U /I Linear polarization component (+45 or -45 degrees)

E U /I Error onU /I
V − J Observed color of blazar
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Figure 2: Spatialmapping of TimeTubes: (a) One data sample

with each time stamp is shown as an ellipse. (b) The neigh-

boring ellipses are connected by Catmul-Rom splines.

primitives to display multidimensional data. We introduced the

rule composition by union into the present version of TimeTubes.

3 DESIGN OF TIMETUBES

In this section, we briefly describe the target blazar datasets and

spatial mapping of TimeTubes proposed in the previous work [20].

As tabulated in Table 1, TimeTubes visualizes six representative

variables from eight variables in the original blazar dataset to fa-

cilitate effective blazar classification. Each variable is measured

in Julian day (JD). Instead of animating 2D plots, TimeTubes re-

lies on 3D geometry and shows the multiple variables with each

time stamp as an ellipse, whose central coordinate is given as

(x ,y, z) = (Q/I ,U /I , JD) and whose major and minor axes are

given as 2E Q/I and 2E U /I , respectively, as shown in Figure 2 (a).

The neighboring ellipses are connected to each other by centripetal

Figure 3: User interface of TimeTubes: (a) Visualization win-

dow, (b) menu, and (c) operation panel.
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Visual data fusion

Juxtaposition Merge

Ameliorating uncertainties by comparing tubes Ameliorating uncertainties by merging datasets into a tube

Side-by-side Union SelectiveAll
Separate windows Single window All data samples Selected data samples

Left: AU, right: HU Blue-red: HU, green-light green: AU Green glyph: HU, pink glyph: AU

Figure 4: Categorized functions of visual data fusion with TimeTubes. Two visual fusion modes and two options for each are

provided. Results of visualizing the datasets for body 3C 454.3 around JD = 4, 742.73 are shown.

Catmull-Rom splines to form a 3D volumetric tube, as shown in Fig-

ure 2 (b). To reflect the reliability of observations, the translucency

of the outer tube is larger than that of the inner. Small errors result

in a sharply rendered tube, whereas a tube associated with a large

range of errors has a vague appearance. Astronomers can see the

time variation of these six time-varying variables simultaneously.

The current user interface of TimeTubes, in which the method

proposed here has been installed, is shown in Figure 3. Figure 3 (a)

shows the visualization result of a dataset, in which users are al-

lowed to manipulate the tube interactively. The menu shown in

Figure 3 (b) allows for camera control, switching the display of the

cruciform axes and placing a glyph that expresses the contour of

the tube at each data sample, which has been introduced newly

to clarify the missing periods of observation. The operation panel

shown in Figure 3 (c) enables users to perform their visual analysis

through overviewing, filtering, details-on-demand, and relating

with scatterplots. See the accompanying video for the actual look

and feel of the interface.

4 BASIC VISUAL DATA FUSION OPERATIONS

Theproposedmethod is designed to fuse two observed datasets: one

fromHiroshima University (HU) [10] and the other from the Univer-

sity of Arizona (AU) (http://james.as.arizona.edu/∼psmith/Fermi/).

Some differences can be found between HU and AU datasets. The as-

tronomical telescope at HU allows us to observe six time-dependent

variables simultaneously, as seen in Table 1, whereas the one at

AU does not provide polarization or intensity simultaneously, and

thus the observation time stamps of polarization and intensity in

the dataset do not match. Therefore, we need to interpolate each

of these variables respectively in order to treat the AU datasets in

the same way we treat the HU datasets. Though the AU datasets

do not have intensity data with the same observation time stamps

of polarization, TimeTubes interpolates those intensity values to

pretend as if there were intensity data observed with the time stamp.

To visually identify whether there exist data samples or not and

whether the shape of the tube is formed by observed values or inter-

polated values, TimeTubes places white crosses with all observation

time stamps and glyphs with time stamps when polarization was

observed. Moreover, to clarify whether the current focused JD in

TimeTubes has observed data or not, the colors of the grid, cross,

and glyph will be changed when the current focused JD coincides

with an observation time in the dataset. Note that the color of the

tube generated from the AU dataset is determined in an ad hoc

manner; this is because the color data is not available from the

same data source.

We will introduce two modes of visual data fusion and two

options for each mode, as summarized in Figure 4. Note that the

Merge mode corresponds to visual data fusion at the filtering stage

of the conventional visualization pipeline: fusing them numerically

to ameliorate both data- and mapping-inherent uncertainties by

increasing the amount of observed data used to form a single tube.

In contrast, the Juxtaposition mode corresponds to the mapping

stage: fusing the datasets optically to ameliorate data-inherent

uncertainty by comparing the datasets from two observatories.

In addition, the up-to-date TimeTubes system shown in Figure 3

provides a federated view with traditional scatterplots, with which

astronomers have been familiar.

4.1 Visual data fusion

4.1.1 Juxtaposition. The Juxtapositionmode is the most straight-

forward way in the visual data fusion, and it would be best to begin

with this essential mode. The observation values are not completely

reliable due to their errors like E Q/I ,E U /I , but we can increase

their reliability by using datasets from two different observatories

in a comparative manner. Moreover, users can identify differences

between multiple datasets with Juxtaposition, which may lead to

the estimation of the true observed value.

With the Side-by-side option, users can compare two observed

datasets in separate windows. This option can be used for datasets

not only for the same blazar but also for different blazars. With

the Union option, users can overlap multiple tubes in the same
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window. The color of the tubes can be defined separately. This

option is suitable for comparing datasets for the same blazar, where

arbitrarily focused time of the datasets in the visualization space

fits automatically.

If the values of the observed data from different observatories

are very close, we can consider these values to be more reliable

than those from a single observatory. If they are dissimilar, we

can estimate a true value by allowing for errors and observation

conditions.

Because of the difference between the observation conditions,

the global centers of observed datasets may not coincide with each

other. We can get a hint for proper calibration by comparing multi-

ple observed datasets from different observatories with the Juxta-

position mode.

4.1.2 Merge. The number of data samples will increase by join-

ing datasets from two observatories with the Merge mode. As a

result, the missing period of observation can be shortened virtually

and uncertainties by the missing periods can be ameliorated.

In the Merge mode, data samples from the AU and HU datasets

have beenmerged into a single dataset in chronological order before

the resultant tube is rendered. If there are multiple data samples

with the same observation time stamp, TimeTubes chooses the one

with smaller errors. The color hue of the glyph expressing the

tube contour distinguishes data sources: Green indicates HU and

pink indicates AU. For the analysis of blazars, denser observation

is required because blazars fluctuate very rapidly. Merging the

two observed datasets, we can densify information rather than

visualizing them separately. Using this mode, new features of the

blazars are expected to be found.

With the All option, which is selected by default, all the data

samples from the two observatories are merged into a single tube.

This option leads to the densest information. The Selective option

allows users to select arbitrary portions of the datasets with scat-

terplots. Outliers and/or unexpected values may be included in

the dataset for various reasons. Visualizing the dataset without

those values, users can analyze more correct visualization results.

Moreover, when both HU and AU have data samples at an equal

JD, users can choose to visualize either of them with this option,

which allows users to validate the observed data visually.

Note that the currentMergemode does not take the gaps between

the center of the observed datasets into account, whichmay give rise

to improper visualization, as will be discussed in detail in Section 5.3.

Users can ascertain whether what is visualized is proper or not by

using the Merge mode in combination with the Juxtaposition mode.

4.2 Linking with traditional scatterplots

In its current version, TimeTubes can be mutually linked with

scatterplots between two arbitrary variables, as shown in Figure 5.

This function is available in both visual data fusion modes. Plots

in this scatterplots are colored differently between HU and AU as

glyphs around the tube: Green plots indicates HU and pink plots

indicates AU. Note that the focused data sample in TimeTubes

is shown as a blue plot in the scatterplots. Moreover, users can

jump to specific JD in TimeTubes easily by selecting a plot in the

scatterplots. This function serves a substantial role because we need

to consider the fact that astronomers have thus far relied primarily

Figure 5: Linking with traditional scatterplots. Left window:

scatterplots, right window: TimeTubes.

on scatterplots, as shown in Figure 1. Users can reconfirm what

was found in the tube representation in the traditional view as well.

Please take a look at the accompanying video for more details.

5 VISUAL ANALYSIS RESULTS

We present three kinds of findings that we were able to obtain from

conducting a visual analysis of the actual blazar datasets from HU

and AU. Note that several black-background images will be used

for visibility below.

5.1 Juxtaposition

We took full advantage of the Juxtaposition mode to observe the HU

and AU datasets for the same blazar. Figure 6 juxtaposes the orthog-

onally projected visualizations of the datasets for body 3C 454.3

around JD = 5, 124. The AU dataset is visualized in the left window

and the HU dataset in the right. The red and green lines in the

resulting image show the centerline of the tubes. Even though

the datasets for the same blazar were chosen for the same period,

it turned out that the values in the vertical-axis direction (U /I )
changed differently.

Using Juxtaposition, users can identify the global differences

between the datasets easily and analyze them more carefully.

Figure 6: Juxtaposition: Side-by-side. Left: AU, right: HU.

The red and green lines show the centerline of the tubes.
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(a) Before Merge: HU. (b) Before Merge: AU.

(c) Merged result. Filling up missing periods in a red circle.

Figure 7: Filling in the missing period.

(a) All option. (b) Selective Option.

Figure 8: Effect of data selection in the Merge mode.

5.2 Merge

We merged the observed datasets from HU and AU for the same

blazar (that is, 3C 454.3 around JD = 4, 856) using the All option.

Figures 7 (a) and (b) visualize the two datasets separately. The

HU dataset does not have data samples for the period indicated

by the red arrow in Figure 7 (a), whereas the AU dataset does

have data samples for the same period, as indicated by the red

circle in Figure 7 (b). We relied on Merge to fill in the missing

period in the HU dataset with the data samples from the AU dataset.

Contrasting the result shown in Figure 7 (c) with the original shown

in Figure 7 (a) indicates that the uncertainty caused by the missing

period is ameliorated and astronomers can get more information

from one view than the result of visualizing a single dataset.

Figure 8 visualizes the dataset for body 3C 454.3 around JD =
4, 742.73 using the Selective option. In Figure 8 (a), all data samples

were merged to render a single tube. In contrast, as shown in

(a) (b)

Figure 9: Unexpected visualization: (a) Expected result by

increasing the number of data samples. (b) Improper visu-

alization caused by the gap between the datasets. Red lines

show the centerline of the tube after Merge.

Figure 8 (b), we selected data samples from AU in periods when

AU observes the blazar intensively and from HU in the remaining

periods. We can see that the tube shape in the areas that appear

in the red circle in Figure 8 (b) is different from the corresponding

shape in Figure 8 (a). If the gap between the datasets is large,

the visualization result may be improper, as will be explained in

Section 5.3. By choosing between HU and AU for every period,

information will be provided that is denser than what could be

provided by the tube from an individual dataset with less influence

by the gap.

5.3 Negative effect caused by the gap between
the datasets

Current TimeTubes merges the datasets from different observa-

tories without any consideration of their gap. Though we expect

that increasing the number of data samples will result in a more

detailed and accurate visualization of the behavior of blazars, as

shown in Figure 9 (a), the gap between the datasets can cause an

improper and misleading visualization of the behavior, as shown in

Figure 9 (b). The datasets cannot be calibrated automatically, but

users are allowed to estimate the gap using the Juxtaposition mode.

6 CONCLUSION

Our new method can ameliorate two types of uncertainty, each of

which may arise at the data input/filtering stages and the mapping

stage in the visualization pipeline. The new TimeTubes functions

can utilize multiple datasets to represent the behavior of the ob-

served blazars more accurately. According to Gleicher et al. [6],

visual designs for comparison are grouped into three basic cate-

gories: juxtaposition, superposition and explicit encodings. We

have already implemented juxtaposition and superposition as the

Side-by-side option and Union option, respectively. Our next chal-

lenge is to think about explicit encodings (for example, by showing

the difference between two datasets).

For a more effective analysis of blazars, we need to introduce

more sophisticated functions to handle uncertainty, including

auto/manual calibration of datasets, filtering of missing periods,

and feature extraction. Moreover, implementing visual data fusion

at the rendering stage still constitutes a challenge.
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