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ABSTRACT

Image saliency is a biologically inspired concept for charac-
terizing visual conspicuity of individual features in natural
images, and provides us with a useful insight into the mech-
anism for directing instant visual attention from viewers.
Nevertheless, this perceptual quality often remains to be fur-
ther sophisticated especially for enhancing saliency in info-
graphic images since they usually consist of relatively simple
visual pattens that result in sharp image edges rather than
smooth gradations in natural images. This paper presents a
new approach to intentionally drawing visual attention for
infographic images, in such a way that the corresponding
important features naturally pop up in the image. The idea
behind our approach is to introduce the concept of symme-
try saliency for enhancing local symmetry inherent in such
infographic images. This is accomplished by evaluating how
much each image edge contributes to the symmetry saliency,
and augmenting the corresponding image gradient in propor-
tion to the amount of its contribution. The intensity field
of the given image is then modulated with such enhanced
image edges by solving the Poisson equation. Several exam-
ples together with statistics obtained through a user study
demonstrate that our proposed approach successfully im-
proves the readability of infographic images and effectively
attracts visual attention to intended regions of interest.

CCS Concepts

eHuman-centered computing — Information visual-
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1. INTRODUCTION

Image saliency [7] has been a primary measure for evalu-
ating how much individual image features are conspicuous
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from a perceptual point of view. The associated computa-
tional model for the image analysis facilitates us to choose
important regions that naturally pop up in the images. Fur-
thermore, enhancing such image saliency leads us to the idea
of intentionally drawing visual attention to specific regions
of interest from viewers. This functionality is quite helpful
when we have to improve the readability of visual images
in such a way that every viewer can fully understand the
associated contents in a perceptually plausible manner.

Nonetheless, the conventional saliency model basically as-
sumes as input natural images that usually consist of rela-
tively smooth gradation in the intensity value. This means
that we have to incorporate additional mechanism when try-
ing to analyze specific types of image that contain a large
amount of sharp image edges. Infographic images are such
examples in the sense that they usually consist of relatively
simple patterns as visual metaphors and thus contain im-
age edges as the boundary of these visual components. In
this case, we have to think of such sharp image edges not
only as individual features but also as a group so that we
can extract specific patterns from the layout of such visual
components.

The Gestalt principles [22] are a well-known set of psycho-
logical grouping laws that help us infer the underlying group-
ing structures of visual objects in the images. In practice,
seven grouping principles are usually listed as the Gestalt
laws: proximity, similarity, continuity, closure, area (figure
and ground), common fate, and symmetry. Among these
seven principles, the symmetry principle plays an important
role because it allows us to schematize visual images by ap-
proximating them as pairs of symmetric patterns extracted
from object silhouettes. This means that the symmetry is
the most related to the aesthetics in the visual design and
serves as the key for understanding schematized visual rep-
resentations such as infographic images. Another examples
on which the symmetry exerts a significant influence include
facial images [18], architectural/artistic paintings [14], etc.
Thus, incorporating image saliency arising from symmetric
structures can lead us to a promising approach for improving
the readability of visual images with sharp edges.

This paper presents a novel approach for improving the
readability of such infographic images by enhancing local
symmetry inherent in the layout of visual patterns. Our
idea here is to extract symmetric patterns of image edges,
as one of the grouping laws of the Gestalt principles. This is
reasonable because infographic representations often employ
aesthetic design rules that take into account symmetries in
the layout of visual patterns as well as their shapes them-
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selves. Our computation proceeds by evaluating how much
each image edge contributes to the saliency arising from lo-
cal symmetry first, and then exaggerating its gradient of the
intensity value according to its contribution. This is followed
by an image transformation step, in which the field of inten-
sity value is modulated using the technique similar to tone
mapping for high dynamic range imaging. We also present
several examples together with results of our user study, to
demonstrate how our approach can successfully enhance the
image saliency inherent in the underlying symmetric struc-
tures.

This paper is organized as follows: Section 2 provides a
brief survey on existing work relevant to ours. Section 3
describes details of our proposed approach for enhancing
features extracted from the local symmetry embedded in the
input images. After presenting several examples together
with results of our user study in Section 4, we conclude this
paper and refer to possible future extensions in Section 5.

2. RELATED WORK

The concept of the saliency map originated in the work by
Koch and Ullman [10]. In general, visual attention has been
categorized into two types: bottom-up attention where vi-
sual interest arises from the visual stimuli obtained through
retinal images [1, 16], and top-down attention where interest
has been influenced by knowledge of the viewers about past
experiences [20]. The computational model of the saliency
map was initiated by Itti et al. [7], and after that a large
number of its variants have been developed so far. These
includes real-time computation based integral images [4],
top-down attention systems [3], and modeling of task in-
fluence [15] to name a few.

Directing visual attention is one of the relevant applica-
tions based on the saliency model. This research issue is
quite important since we often need to intentionally draw
visual attention to specific image features in any type of
visualization setup. A pioneering work was done by Kim
and Varshney [9], where they solved an inverse problem of
computing saliency maps from the given images in the con-
text of volume visualization. This has been followed by,
for example, semantic depth-of-field model based on sali-
ency [19], saliency enhancement with spatiotemporal coher-
ence [13], task-based saliency for directing top-down visual
attention [6], etc. Jénicke and Chen [8] presented a saliency-
based metric for evaluating the quality of visualization im-
ages, which allows us to choose the best visualization from a
set of alternatives. Distorting spatial arrangement of depth
cues also permits us to control the distribution of visual at-
tention on perspective images [12, 25].

On the other hand, we need a different model for com-
puting the saliency if we handle a specific type of image
that contains features associated with grouping laws of the
Gestalt principles, such as infographic images. Several com-
putational models for Gestalt related saliency have been pro-
posed that employ the laws of continuity [21], symmetry [11],
similarity [24], and mixture of proximity, similarity, and clo-
sure [26]. Our approach specifically employs the model by
Kootstra et al. [11] for computing symmetric saliency em-
bedded in the given images.

3. OUR APPROACH

As mentioned earlier, our approach has its basis on the
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Figure 1: A symmetry kernel consisting of an r x r
grid of pixels. (a) We consider a pair of pixels p;
and p; that are symmetric with respect to the center
pixel p, and (b) then compute the associated angles
0; and 6; and edge sharpness m; and m; to compute
the symmetry saliency s(i,j) in terms of p; and p;.

computational model for symmetry saliency [11], which em-
ploys an operator for detecting local symmetry [17]. In this
model, we need to measure the amount of local symmetry
at each pixel, which is influenced by image edges within
its local neighborhood. This is accomplished by computing
how much an individual image edge contributes to the local
symmetry within its vicinity. We then enhance an individ-
ual edge by accentuating its image gradient in proportion
to the degree of its contribution to the symmetry saliency.
Note that we conduct this process at several resolutions of
the images individually through the Gaussian pyramid, in
the same way as done when computing conventional image
saliency [7], and thus we can incorporate an appropriate
range of frequency components in this computation. We
then try to modulate the field of image intensity by respect-
ing the enhanced gradients associated with the image edges.
This has been achieved by solving the Poisson equation, with
reference to conventional tone mapping techniques used in
high-dynamic range imaging.

3.1 Computing Symmetry Saliency Maps

First of all, we limit ourselves to grayscale images as input.
Let us consider an r x r grid of pixels on the input image
as shown in Figure 1. Here, we call this rectangular grid a
symmetry kernel [17], where r is set to 25 by default.

Our first step is to apply Sobel filters at every pixel to
compute the sharpness of its vertical and horizontal edges,
where the corresponding filters are represented by the fol-
lowing 3 x 3 masks:

10 -1 12 1
L=120 -2/, ,=[0 0 0 (1)
10 -1 -1 -2 -1

This means that we compute a weighted sum of the 3 x 3
grid of pixels around the target pixel while referring to the
matrices of weight values shown above. We then compute
the sharpness and orientation of the edge at pixel p; as:

m; = \/Is(pi)? + Iy(p:)?, and (2)
6; = tan~" (? EZ; ) (3)
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Figure 2: A simple example. (a) An input image. (b) Symmetry saliency map. (c) Entirely enhanced image.
(d) Contour lines representing the region for local enhancement. (e) Locally enhanced image.

where I, (p;) and I (p;) indicate the sharpness of horizontal
and vertical image edges at pixel p;.

The symmetry saliency at pixel p, when sampling a sym-
metric pair of pixels p; and p;, can be given by:

s(pispj) = d(pi, pj, 0)-c(pi, pj)-log(14m;)-log(1+my). (4)

Here, the weight function d(p;, p;, o) is defined in such a way
that it increases as the distance between p; and p; (i.e., |p; —
pi|) becomes smaller. In practice, d(pi, pj, o) is set to be

Xp(—lpj — pil ), (5)
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d(piapj7a) = We

where o = 32 by default. Moreover, ¢(p;, p;) is defined as:

c(pi,pj) = (L= cos(vi +75)) - (1 = cos(yi =3))-  (6)

Here, we assume that o represents an angle spanned by the
z-axis and line P;p;, as shown in Figure 1(b), which means
that v; and v; correspond to #; —a and 6; — «, respectively.

The total amount of local symmetry S;(p) can be com-
puted by summing up s(ps;,p;) for every pair of p; and p;
within the symmetry kernel of p as:

Sl(p) = Z S(ivj)7 (7)

(pipj)€ET

where I' represents the symmetry kernel of p. Notice that [
represents the layer ID of the image in the Gaussian pyra-
mid. In this approach, the local symmetry S;(p) is calcu-
lated independently at each layer, and then the local sym-
metry values are summed up at all the levels through the
entire Gaussian pyramid by equalizing the resolution (i.e.,
sampling rate) of the image at the respective layers. Fig-
ure 2(b) presents the symmetry saliency map of the input
image shown in Figure 2(a), where white pixels indicate high
saliency regions.

3.2 Modulating Gradients of Image Edges

For improving the readability of infographic representa-
tions, we modulate the gradients of image edges according
to their contribution to the symmetry saliency of the images.
First, we compute the directional gradient values in terms
of the pixel coordinates. Let us denote the intensity value at
the pixel coordinates (x,y) by h(z,y). The gradient g and
its direction v at (z,y) are defined as

9(z,y) = [ Vh(z,y) ||  and (8)
v(z,y) = Vh(z,y)/ || Vh(z,y) [, )

respectively, where the partial derivatives of h can be calcu-
lated as finite differences. We are now ready to consider how
we can modulate the gradient at each pixel. Suppose that
we consider the pixel coordinates ¢ = (7, j) and its 7 X r sym-
metry kernel. This means that pixel ¢ = (z,y) within the
symmetry kernel will contribute the symmetry saliency at
the center pixel ¢. Let us denote this contribution by (g, ¢),
which can be derived from Eq. (4). The total contribution
of g over the entire image is given by

T(g)= Y ta0). (10)

c€image

After having accumulated the contribution of pixels ¢ over
the entire image, we normalize the contribution values at
each pixel by referring to the maximum and minimum con-
tribution values Tmax and Tmin, respectively. Let us denote
the normalized contribution of pixel q as T(q) € [0,1]. The
gradient g(z,y) = g(q) will be transformed to:

g'(q) = ((b—a)-T(q) +a) - g(q) (11)

Note that a and b indicate the minimum and maximum
enhancement ratio of the modulated gradient, and we set
a = 1.0 and b = 3.0 unless stated otherwise, while we employ
a = 1.0 and b = 4.0 for producing results in Figures 2(c)-(e).

3.3 Reconstructing Fields of Image Intensities

For finally enhancing the image edges based on the sym-
metry saliency, we employ conventional gradient-based tech-
niques for compressing the high dynamic range of image in-
tensity [2, 23]. In the original dynamic range compression,
they tried to compress contrasts inherent in image edges
while maximally retaining textures with small gradients. On
the other hand, we employ this technique to modulate the
field of image intensity values while respecting enhanced im-
age edges as described above.

The formulation of our technique can be summarized as
follows. Recall that the intensity value and enhanced gradi-
ent at pixel ¢ = (z,y) are h(z,y) and ¢'(z,y) (cf. Eq. (11)),
respectively. What we have to do here is to find the opti-
mized integration h'(z,y) as the following integral:

W (a,y) = axgmin [ [ [9ha,y) - o, *dedy (12)
This eventually amounts to solving the Poisson equation:
V2h =div ¢'. (13)

In order to solve this equation, we employed the successive
overrelaxation (SOR) method, which is an extension of the



Gauss-Seidel method. This allows us to improve the read-
ability of infographic images by enhancing the image edges
that contribute to the local symmetry. Figure 2(c) shows
such an example where image edges over the entire domain
have been enhanced according to the amount of their con-
tribution to the symmetry saliency.

3.4 Enhancing Local Image Regions

It is also possible to limit our edge enhancement process to
a specific region when we want to intentionally direct visual
attention from viewers. This is achieved by assigning more
weight to the contribution of that region by convolving a
Gaussian kernel around the center pixel ¢ = (7,7) in that
region, as follows:

Ta)= > wle) tlac) (14)

ccimage

where w(c) indicates the Gaussian kernel centered at ¢ =
(4,7). Of course, we can control the range of this Gaussian
kernel by adjusting its standard deviation . By employing
this updated amount of contribution to local symmetry at ¢,
we can modulate the field of image intensity values again by
solving Poisson equation in Eq. (13). Figure 2(e) shows such
an example where the edges of the input image have been
specifically augmented in the neighborhood of the specific
position outlined by contour lines in Figure 2(d).

3.5 Extending Formulation to Color Images

Finally, we describe how we can extend our formulation
to color images. Basically, even for color images, we can
still follow the same computational process as we did for
grayscale images, except for the definition of symmetry sali-
ency. Indeed, we replace the grayscale symmetry operator
in Eq. (4) with the following color symmetry operator [5]:

s'(pi, i) = Z

(ki kj)EK

d(pi7pjva) : C(piapj7kiakj)

-log(1 4 mi(ki)) - log(1 +m;(k;)), (15)

where K represents the set of all combinations of colors from
red (R), green (G), and blue (B), i.e., K = {(R, R), (R, G),
(R,B),(G,R),(G,G),(G, B),(B,R),(B,G),(B,G)}. This
means that c¢(p;,p;, ki, k;) can be computed by first refer-
ring to the edge orientations of color k; at pixel p; and color
kj at pixel p;, and then calculating Eq. (6). After having
retrieved m;(k;) and m;(k;) as the sharpness of the image
edges of color k; at pixel p; and color k; at pixel p;, respec-
tively, we can finally accumulate symmetry saliency values
for all the colors by computing Eq. (7).

4. RESULTS

This section presents several examples of enhanced images
obtained using the proposed approach, together with results
of our user study and discussions.

4.1 Image Enhancement Examples

Our prototype system was implemented on a laptop PC
with Intel Core i7 CPU (1.7GHz, 4MB cache) and 8GB
RAM; the source code is written in C++ using OpenCV
library for handling images. Overall, it took approximately
one minute or a little more to finish up the modulation for
one image in this computational environment.

We took as inputs images of statistical charts, a node-link
diagram, a tag cloud, and a city map, as shown in the 1st
row of Figure 3. Note that the first two are grayscale images
while the last two images are in color. We first computed
the symmetry saliency map of each input image through
its Gaussian pyramid representation using the conventional
algorithm [11] as shown in the 2nd row of Figure 3, and then
enhanced the image edges in proportion to its contribution
to the symmetry saliency as shown in the 3rd row of Figure 3.

We also tried to locally enhance the image edges derived
from the symmetry saliency so as to intentionally direct vi-
sual attention to a specific region from viewers. The top
row of Figure 3 also indicates contour lines, which corre-
sponds to level sets of Gaussian functions we employed for
locally enhancing the symmetry saliency in the respective
images. The associated transformations were reflected in lo-
cally accentuated images where image edges are naturally
modulated according to the position of the weighting Gaus-
sian functions, as shown in the 4th row of Figure 3. We
again computed the symmetry saliency maps of these lo-
cally enhanced infographic images as shown in the bottom
row of Figure 3, which helps assess the effects of such local
edge enhancements. In practice, the comparison between the
symmetry saliency maps in the 2nd and 5th rows confidently
predicts that our approach for locally enhancing symmetry
saliency will successfully attract viewers’ visual attention to
the specified region, from a computational point of view. It
is also noteworthy that our image enhancer smoothly aug-
mented the underlying symmetry saliency over the image,
and thus produces naturally looking visual representations
regardless of the types of infographic images.

4.2 User Study

We also conducted a user study in order to evaluate prac-
tical effects of the proposed image enhancement. Our user
study was conducted in two parts. The first part is to
seek feedback from participants through the online ques-
tionnaires, to identify how much the image readability is
improved while unnatural artifacts are incorporated accord-
ing to the degree of image enhancement. The second part is
to perform eye-tracking studies for investigating how much
we can draw visual attention on specified regions of interest.

The objective of the first part is to identify the proper
range of the enhancement ratio b in Eq. (11), where we fix
a to be 1.0. In this part, we recruited 21 participants (7
females and 14 males) where half of them major in com-
puter graphics, image processing, and other relevant fields,
and their ages ranged from 20 to 59. As the first example,
we generated enhanced grayscale images of a node-link di-
agram with several enhancement ratios b = 1.25, 1.5, 2.0,
2.5, 3.0, 3.5, and 4.0 as shown in Figure 4. Here, the partic-
ipants are requested to see the original image (Figure 4(a))
and the enhanced images (Figures 4(b)-(h)) all at once, and
answer whether the readability of each enhance image is im-
proved or not and whether it contains unnatural artificial
effects. Figure 4 shows the statistics of the responses from
the participants. Note that the percentage of “None” repre-
sents the ratio of the participants who could not recognize
any readability improvements and artificial effects on all the
enhanced images. We also ask the participants to carry out
the same evaluation for the tag cloud color images as shown
in Figure 5, as the second example.

For the grayscale image of a node-like diagram, the most
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Figure 3: Enhancing symmetry saliency in infographic images: (a) Statistical charts (grayscale). (b) Node-
link diagram (grayscale). (b) Tag cloud (color). (c¢) City map (color). 1st row: Input images (with contour
lines for local symmetry enhancement). 2nd row: Symmetry saliency maps. 3rd row: Entirely enhanced
images. 4th row: Locally enhanced images. 5th row: Symmetry saliency maps of the locally enhanced
images.
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Figure 5: The input tag cloud images and their enhanced versions with enhancement ratios b = 1.25, 1.5, 2.0,

2.5, 3.0, 3.5, and 4.0 in Eq. (11).

participants liked the image with the enhancement ratio
b = 2.0 while the majority of them feel excessive intensity
emphasis when b = 4.0. On the other hand, for the color im-
age of a tag cloud, the participants still preferred enhanced
images with b = 2.5 and b = 3.0 and found all the enhanced
images less artificial. In practice, we presented a few more
infographic images to the participants in this first part, and
recognized that these trends are common in the statistics
both for grayscale and color images. This suggested that
we can employ b = 2.0 for grayscale infographic images and
b = 2.5 or 3.0 for color images, as the compromise between
the effects and artifacts of the proposed image enhancement.

In the second part, we evaluated how much we could in-
tentionally direct visual attention to specific regions on the
input infographic images through eye-tracking experiments.
In this part, we collected 12 participants (2 females and 10
males) with normal or corrected to normal vision, and their
ages ranges from 22 to 35. Participants are asked to freely

look at a set of original images, a set of entirely enhanced
images, and a set of locally enhanced images, while the or-
ders of the three images sets and the images in each set were
both randomly shuffled. In this experiment, each image was
presented to the participants for 5 seconds immediately after
an initial gaze fixation on a cross mark for 3 seconds. Note
that we spared a short break after an individual set of images
were presented to sufficiently refresh the participants.

We employed the Tobii X120 eye-tracker to record the
transition of the eye-gaze fixation over the respective im-
ages. Here, we conducted comparisons between original, en-
tirely enhanced, and locally enhanced images as exhibited
in Figure 6, where, for each image, we produced two heat
maps that represent the relative durations of gaze fixation
for the first half (from 0.5 to 2.5 seconds) and second half
(from 2.5 seconds to 4.5 seconds), respectively. Note that we
skipped the first 0.5 seconds to exclude influence from the
initial gaze fixation at the image center, while the last 0.5
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to the input images in Figure 3.

seconds to equalize the periods of image presentation in the
first and second halves. We also set b = 3.0 in Eq. (11) for
enhancing all the images both entirely and locally. As shown
in the color legends, the color of each heat map changes from
green to yellow to red as the fixation duration increases.
Overall, the results show that each locally enhanced image
synthesized using our approach could draw more visual at-
tention to the specified region of interest already in the first
half. On the other hand, an entirely enhanced image usu-
ally directed attention to all the major edges, and thus the
eye-gaze distribution was scattered rather uniformly when
compared with that for the locally enhanced one. One in-
teresting exception is the city map case, where the eye-gaze
distributions were almost the same for the three images in
the first half, while in the second half the locally enhanced
image drew more attention to the specified region. Actu-
ally, our observation suggests, as the image contents become
more complicated, it takes more time until the distributions
of eye-gaze fixation differ among the three images. This can
be justified from that we need more time to direct visual
attention in the order of Figures 6 (a), (b), (¢), and (d).
Last but not least, all the participants were asked whether

they could identify differences among the three images after
their tasks, and surprisingly none of them could not do so.
This implies that our synthesized images can naturally draw
attention from them without creating noticeable artifacts.

4.3 Discussions

One possible failure case is infographic images with an-
notation texts, in which we fail to sufficiently direct visual
attention to specific patterns. In practice, annotation texts
are more likely to hold attention from viewers, and some
special schemes may be necessary for fully enhancing the vi-
sual patterns inherent in infographic images while avoiding
conflicts with the texts. Another possible problem is that we
cannot sufficiently attract visual attention if the input image
only has dull edges or little local symmetry. Adaptively ad-
justing the degree of symmetry enhancement over the image
still remains as our future problems, especially for handling
images having both smooth graduation and sharp edges as
we often encounter in the context of scientific visualization.

S. CONCLUSION

This paper has presented a novel approach to enhancing



infographic images by referring to their symmetry saliency.
Following the Gestalt principle that the symmetry signifi-
cantly attracts our visual attention, we enhance the image
edges arising from local symmetry by taking advantage of
conventional model for computing such symmetry saliency.
This has been accomplished by enhancing image edges in
proportion to the degree of their contribution to local sym-
metry, and modulating the field of intensity values so that
we can accommodate enhanced image edges within the im-
age quantization levels through the Poisson equation solver.
Synthesized image examples together with the results of our
user study justify the mechanism of our approach.

6. ACKNOWLEDGMENTS

This work has been partially supported by JSPS KAK-
ENHI Grant Numbers 16H02825, 26730061, and 15K12032,
and MEXT KAKENHI Grant Number 25120014.

7. REFERENCES

[1] J. Duncan and G. W. Humphreys. Visual search and
stimulus similarity. Psychological Review, 96:433-458,
1989.

[2] R. Fattal, D. Lischinski, and M. Werman. Gradient
domain high dynamic range compression. ACM
Transactions on Graphics, 21(3):249-256, 2002.

[3] S. Frintrop, G. Backer, and E. Rome. Goal-directed
search with a top-down modulated computational
attention system. In Proceedings of the Annual
Meeting of the German Association for Pattern
Recognition, volume 3663 of Springer Lecture Notes in
Computer Science, pages 117-124, 2005.

[4] S. Frintrop, M. Klodt, and E. Rome. A real-time
visual attention system using integral images. In
International Conference on Computer Vision
Systems, 2007.

[5] G. Heidemann. Focus-of-attention from local color
symmetries. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(7):817-830, 2004.

[6] S. Hillaire, A. Lecuyer, T. Regia-Corte, R. Cozot,

J. Royan, and G. Breton. Design and application of
real-time visual attention model for the exploration of
3D virtual environments. IEEE Transactions on
Visualization and Computer Graphics, 18(3):356—-368,
2012.

[7] L. Itti, C. Koch, and E. Niebur. A model of
saliency-based visual attention for rapid scene
analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(11):1254-1259, 1998.

[8] H. Jénicke and M. Chen. A salience-based quality
metric for visualization. Computer Graphics Forum,
29(3):1183-1192, 2010.

[9] Y. Kim and A. Varshney. Saliency-guided
enhancement for volume visualization. [EEE
Transactions on Visualization and Computer
Graphics, 12(5):925-932, 2006.

[10] C. Koch and S. Ullman. Shifts in selective attention:
Towards the underlying neural circuitry. Human
Neurobiology, 4:219-227, 1985.

[11] G. Kootstra, B. de Boer, and L. Schomaker. Predicting
eye fixations on complex visual stimuli using local
symmetry. Cognitive Computation, 3(1):223-240, 2011.

[12] K. Mashio, K. Yoshida, S. Takahashi, and M. Okada.
Automatic blending of multiple perspective views for
aesthetic composition. In Proceedings of the 10th
International Symposium on Smart Graphics (Smart
Graphics 2010), volume 6133 of Springer Lecture
Notes in Computer Science, pages 220-231, 2010.

[13] E. Mendez, S. Feiner, and D. Schmalstieg. Focus and
context in mixed reality by modulating first order
salient features. In Proceedings of the 10th
International Symposium on Smart Graphics (Smart
Graphics 2010), volume 6133 of Sprinter Lecture
Notes in Computer Science, pages 232-243, 2010.

[14] L. Nan, A. Sharf, K. Xie, T.-T. Wong, O. Deussen,
D. Cohen-Or, and B. Chen. Conjoining Gestalt rules
for abstraction of architectural drawings. ACM
Transactions on Graphics, 30(6):185, 2011.

[15] V. Navalpakkam and L. Itti. Modeling the influence of
task on attention. Vision Research, 45:205-231, 2005.

[16] H. C. Nothdurft. The role of features in preattentive
vision: comparison of orientation, motion and color
cues. Vision Research, 33(14):1937-1958, 1993.

[17] D. Reisfeld and Y. Yeshurun. Preprocessing of face
images: Detection of features and pose normalization.
Computer Vision and Image Understanding,
71(3):413-430, 1998.

[18] G. Rhodes, F. Proffitt, J. M. Grady, and A. Sumich.
Facial symmetry and the perception of beauty.
Psychonomic Bulletin & Review, 5(4):659-669, 1998.

[19] Z. Su and S. Takahashi. Real-time enhancement of
image and video saliency using semantic depth of field.
In Proceedings of International Conference on
Computer Vision Theory and Applications (VISAPP
2010), pages 370-375, 2010.

[20] A. M. Treisman and G. Gelade. A feature-integration
theory of attention. Cognitive Psychology, 12:97-136,
1980.

[21] Z. Wang and B. Li. A two-stage approach to saliency
detection in images. In Proceedings of the IEEE
International Conference on Acoustics, Speech and
Signal Processing, 2008 (ICASSP 2008), pages
965-968, 2008.

[22] C. Ware. Information Visualization: Perception for
Design. Morgan Kaufmann Publishers Inc., 3rd
edition, 2013.

[23] T. Weyrich, J. Deng, C. Barnes, S. Rusinkiewicz, and
A. Finkelstein. Digital bas-relief from 3D scenes. ACM
Transactions on Graphics, 26(3):32, 2007.

[24] J. Wu and L. Zhang. Gestalt saliency: Salient region
detection based on Gestalt principles. In Proceedings
of the 20th IEEE International Conference on Image
Processing (ICIP 2013), pages 181-185, 2013.

[25] K. Yoshida, S. Takahashi, H. Ono, I. Fujishiro, and
M. Okada. Perceptually-guided design of
nonperspectives through pictorial depth cues. In
Proceedings of Tth International Conference on
Computer Graphics, Imaging and Visualization
(CGiV2010), pages 173-178, 2010.

[26] J.-G. Yu, G.-S. Xia, C. Gao, and A. Samal. A
computational model for object-based visual saliency:
Spreading attention along Gestalt cues. [EEE
Transactions on Multimedia, 18(2):273-286, 2016.



	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Computing Symmetry Saliency Maps
	3.2 Modulating Gradients of Image Edges
	3.3 Reconstructing Fields of Image Intensities
	3.4 Enhancing Local Image Regions
	3.5 Extending Formulation to Color Images

	4 Results
	4.1 Image Enhancement Examples
	4.2 User Study
	4.3 Discussions

	5 Conclusion
	6 Acknowledgments
	7 References

