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ABSTRACT

The bag-of-features models is one of the most popular
and promising approaches for extracting the underlying
semantics from image databases. However, the associ-
ated image categorization based on machine learning
techniques may not convince us of its validity since we
cannot visually verify how the images have been classi-
fied in the high-dimensional image feature space. This
paper aims at visually rearrange the images in the pro-
jected feature space by taking advantage of a set of rep-
resentative features called visual words obtained using
the bag-of-features model. Our main idea is to asso-
ciate each image with a specific number of visual words
to compose a bipartite graph, and then lay out the over-
all images using anchored map representation in which
the ordering of anchor nodes is optimized through a
genetic algorithm. For handling relatively large image
datasets, we adaptively merge a pair of most similar im-
ages one by one to conduct the hierarchical clustering
through the similarity measure based on the weighted
Jaccard coefficient. Voronoi partitioning has been also
incorporated into our approach so that we can visually
identify the image categorization based on support vec-
tor machine. Experimental results are finally presented
to demonstrate that our visualization framework can ef-
fectively elucidate the underlying relationships between
images and visual words through the anchored map rep-
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INTRODUCTION

Sophisticating tools for image categorization becomes
more crucial in content-based retrieval of image databases
due to the rapid increase in their data sizes. While
the associated techniques have been improved until re-
cently, it is still labor intensive to sufficiently infer the
underlying semantics from images. This problem pri-
marily arises from the fact that we cannot precisely
identify specific objects embedded in the images re-
gardless of possible variations in their view, lighting,
and occlusion conditions. The bag-of-features (BoF)
model [19, 3] successfully alleviates this problem for ef-
fective image retrieval. A main idea behind the BoF
model is to seek an analogy of methods for inferring text
categorization based on the bag-of-words model, where
each document is represented as a sparse vector of rep-
resentative words by referring to their occurrence with-
out worrying about their associated orders. In practice,
the BoF model allows us to associate an individual im-
age with a small weighted set of visual words, each of
which stands for a group of local features in the high-
dimensional feature space and thus corresponds to some
specific image content in the image.

Nonetheless, the correctness of the image categorization
is not always convincing even with the help of classifi-
cation methods based on machine learning algorithms,
since the actual mechanism for the associated image
categorization has not been fully visualized due to the
high-dimensionality of the image feature space. In this
study, we solve this problem by encoding the relation-
ship between images and visual words as a bipartite
graph first, and then employing anchored map represen-
tation [13] to rearrange the image set on the 2D screen
space, as shown in Fig. 1(a). Genetic algorithms have
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Figure 1. Using anchored maps to visualize bag-of-features image categorization. (a) Original layout. (b) Enhanced
layout with an optimized circular ordering of visual words annotated with representative images. Images in same
category are brought closer to each other. (#{visual words} = 24.)

also been employed to optimize the circular ordering
of visual words around the image feature space, so that
we can visually elucidate the underlying relationship be-
tween images and visual words, as shown in Fig. 1(b).
Furthermore, we introduced hierarchical representation
of the images by adaptively merging images according
to their similarity values for effectively handing a large
set of images. This hierarchical representation also fa-
cilitates users conduct the image categorization accord-
ing to their preference by interactively selecting a train-
ing set of images for marching learning techniques.

The remainder of this paper is organized as follows:
Sect. provides a study on conventional techniques for
bag-of-features and bipartite graph visualization. Sect.
describes how we can extract image features and con-
struct the dictionary of visual words by extracting low-
level image features. Sect. presents our approach to
transforming the high-dimensional image feature space
to an anchored map representation by referring to the
bipartite relationships between images and visual words.
After having presenting several experimental results to
demonstrate the feasibility of our prototype system in
Sect. , we conclude this paper and refers to future work
in Sect. .

RELATED WORK

Content-based image retrieval has been a hot topic in
the research on image processing, computer graphics,
and multimedia. For effective search for specific con-
tents, it is important to classify images into several
categories by inferring semantics of visual features em-
bedded in them. The bag-of-features (BoF) model is a

well-known approach for such image representation and
helps us categorize images by computing the number
of occurrence of particular visual features contained in
each image [19, 3]. This idea originates from the con-
cept of bag-of-words that naturally allows us to classify
documents by counting the number of particular words
defined in the dictionary [8]. Indeed, this concept has
been extended to the image databases where a set of
local features called visual words is employed as the dic-
tionary for the analysis of image contents.

In the early stage of approaches of this type, several
studies focused on detecting global image features for
encoding the image as a whole. Nonetheless, these
features appeared to be inappropriate for the purpose
of categorizing images because they are too sensitive
to image transformations including translation, scaling,
and rotation together with lighting conditions and oc-
clusions. Lowe presented an feature detection technique
called scale-invariant feature transform (SIFT) [11], which
extracts local image features in a way that they are ro-
bust enough to the prescribed conditions. In practice,
the visual words were obtained by collecting the SIFT
features from a set of training images and employing
the conventional k-means clustering to identify the cor-
responding cluster centers as the visual words.

As for practical approaches for image categorization, we
first encode each image in the database as a weighted
sum of the relevant visual words. Indeed, the BoF
model facilitates us to assign a sparse vector represen-
tation of visual words to each image by quantizing it in
terms of its associated visual words [19, 3] or L1-norm
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Figure 2. The BoF model. (a) SIFT feature vectors extracted from images are plotted in the 128 dimensional feature
space. (b) The k-means clustering algorithm is employed to identify a visual word as the center of each cluster. (c)
Each image is encoded as normalized histogram coordinates in terms of the visual words.

regularization [22]. Support vector machine (SVM) has
been often employed as a standard classifier since it
produces high accuracy in image categorization [3, 4].
As an extension, Bosch et al. [1] revisited the recog-
nition scheme and apply it to the video by employing
probabilistic latent semantic analysis (pLSA) followed
by k-nearest neighbor (k-NN) classification. Over the
years, a wide range of methods have been developed
to improve the quality of the image categorization. A
state-of-the-art technique is spatial pyramid matching
(SPM) proposed by Lazebnik et al. [10], where they
incorporated spatial gradient information of images at
multiple scales into the BoF model. More studies also
focused on improving the discriminative power of the
visual words dictionary. For example, Winn et al. [21]
introduced a statistical measure for the optimization
framework to make the dictionary of the visual words
more compact, while Perronnin [17] combined local and
global feature detection frameworks to exhibit higher
performance. However, the space of image features ex-
tracted by these approaches is always high-dimensional
and too abstract to understand the meaningful struc-
tures hidden behind that space.

Visualizing high-dimensional feature space often suc-
cessfully elucidates the image classification obtained through
machine learning techniques. A dimensionality reduc-
tion technique called multidimensional scaling (MDS) [20,
9] is one of the common techniques to project the high-
dimensional space onto a 2D screen space for better
readability. Recently, Paulovich et al. [16] and Mamani
et al. [12] developed dimensionality reduction frame-
works that allows us to interactively edit the under-
lying structures of the high-dimensional space through
screen-space manipulations. Furthermore, Mizuno et
al. [15] presented a framework for interactively explor-

ing feature space that is specific to the BoF models, by
referring to the relationships between images and visual
words. In our approach, we also focus on the such rela-
tionships specific to the BoF models and encode them
as anchored map representations [13, 18] for visualiza-
tion purposes. Technical details of the present approach
will be detailed later in Sect. .

BAG-OF-FEATURES MODEL FOR IMAGE CATEGORIZA-

TION

This section first provides a brief overview of the BoF
model for encoding images as feature vectors, and de-
scribes how images are categorized using machine learn-
ing techniques.

Image Representation Based on the Bag-of-Features Model

In general, the BoF model consists of the three steps:
feature extraction, visual words dictionary formation and
image-histogram representation. The first step of the
BoF construction is the feature extraction, where we ex-
tract SIFT features from the respective images. Here,
the SIFT features are described as 128-dimensional fea-
ture vectors and plotted within the 128-dimensional fea-
ture space as shown in Fig. 2(a). For conducting the sec-
ond step for the visual words dictionary formation, all
the SIFT features are grouped into a specific number of
clusters. The simplest technique for this purpose is the
conventional k-means clustering algorithm, where the
number of clusters k is predefined. Now we are ready
to identify the center of each cluster as a representative
feature called a visual word, and compose the list of k
visual words as the dictionary as exhibited in Fig. 2(b).
Our last step is image histogram representation, where
we encode each image as a histogram coordinates in
terms of the visual words. This is accomplished by
quantizing each SIFT feature vector contained in the
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Figure 3. Bipartite relationships between images and visual words in the BoF model. (a) An original bipartite graph.
(b) A sparse bipartite graph after edge pruning. (c) The corresponding anchored map representation.

image to its closest visual word in the 128-dimensional
feature space first, and then counting the occurrence of
each visual word to construct the histogram. Finally,
each image is represented as a sparse vector of visual
words by normalizing the bins of the histogram to com-
pose the normalized histogram coordinates, as shown in
Fig. 2(c).

Image Categorization Using Support Vector Machine

In the BoF model, the support vector machine (SVM)
is employed as the simplest learning models for classify-
ing images by partitioning the high-dimensional space
spanned by the extracted visual words [3]. In prac-
tice, the classifier finds the maximum marginal hyper-
surfaces that separates positive and negative samples in
the training dataset, and further classify each of the un-
known samples by referring to the separating hypersur-
faces. In this paper, we introduce the SVM-based im-
age categorization process proposed by Csurka et al. [3]
and visualize how the bounding hypersurfaces enclose
the images of specific type according to the input train-
ing samples provided by users. In our approach, we
employed radial basis functions (RBFs) kernels for rep-
resenting such separating hyperplanes to better classify
the complicated configuration of images in the high-
dimensional space, and visualize the associated image
classification in the screen space for more convincing
representation.

HIERARCHICAL BIPARTITE GRAPH VISUALIZATION

In this section, we describe how to visualize image cate-
gorization via an anchored map representation by refer-
ring to the bipartite relationships between images and
visual words. We also introduce the weighted Jaccard
similarity index for adaptively clustering images so that
we can hierarchically represent large scale image sets
within the framework of anchored maps.

Bipartite Network Composition

The most common way of visualizing the high-dimensional
image feature space is to employ dimensionality reduc-
tion techniques. Nonetheless, it is often the case that
we still cannot fully discriminate each image category
from others if the images are simply projected onto the
low-dimensional space. Our original idea for alleviat-
ing this problem is to extract bipartite relationships
between images and visual words from the BoF model
first, and then transform them into a network structure
so that we can take advantage of existing graph drawing
techniques for better visualization.

For this purpose, we first establish edge connections be-
tween each image and its relevant visual words if they
correspond to non-zero histogram coordinates of that
image. Note that here we represent images and visual
words as nodes of the bipartite graph, while we asso-
ciate each normalized histogram coordinate value with
the corresponding edge as its weight value as shown in
Fig. 3(a). Furthermore, we would like to make the bi-
partite graph as sparse as possible for better readability
of the resulting graph visualization. Thus, we sort the
edges in an ascending order according to the weight val-
ues, and prune the edge having the minimum weight one
by one until we cannot remove edges any more without
decomposing the graph into multiple connected compo-
nents, as shown in Fig. 3(b). In this way, we construct
a sparse representation of the bipartite graph over the
image and visual word nodes.

Anchored Map Representation

As for the visualization of the bipartite relationships,
we employ anchored map representations formulated by
Misue [13, 14]. In the anchored map representation,
nodes in one of the two disjoint sets of the bipartite
graph are equally spaced along the boundary of a disk
region, while nodes of the other set are free to move
within the disk, as shown in Fig. 3(c). In the figure, we
release the image nodes within the central disk region
of the anchored map and fixed the visual word nodes



(a) (b)

Figure 4. Hierarchical structure of bipartite graph visualization. (a) An example bipartite graph between images and
visual words. (b) Dendrogram-based representation of clustered images.

along its circular boundary. The conventional spring
embedder algorithm is also applied to the free nodes to
avoid unnecessary overlap among images in the central
region, where we also incorporate edge weights into our
formulation so that each image will be brought closer to
its relevant visual words according to their correspond-
ing normalized histogram coordinates.

In our sparse representation of the bipartite graph, each
image usually depends on a small number of visual
words. This means that our scheme is more likely to
bring image of the same category close to each other
in the anchored map representation since they usually
share almost the same set of visual words in their his-
togram representation. Furthermore, this visual read-
ability of the image categorization can be enhanced if we
carefully reorder the visual word nodes along the circu-
lar boundary of the disk to make each image node have
its neighbor visual word nodes within its vicinity. This
is accomplished by devising genetic-based algorithms
for optimizing the circular ordering of visual words,
where we define a chromosome as a value-encoding se-
quence of visual word IDs. For fully discriminating be-
tween image categories, we optimize the chromosome
sequence by defining the cost function so that, for each
image node, every pair of its adjacent visual word nodes
become closer to each other. This amounts to calculat-
ing the circular distance between adjacent visual word
nodes for each image node, and summing up the squared
distances except for the largest one [13]. This genetic-
based optimization provides us with better anchored
maps in the sense that images in the same category
will be closer to each other in the central disk region as
shown in Fig. 1(b).

Hierarchical Clustering of Images

As the number of input images increases, the central
disk region of the anchored map will be more crowded
with the images. For improving the scalability of the an-
chored map representation, we also introduced hierar-
chical representation of the anchored map by adaptively
clustering images according to their image similarities.
More specifically, we compose a dendrogram tree struc-
ture of images by merging a pair of the most similar
images one by one iteratively [18]. For evaluating the
similarity among images, we employ the conventional
Jaccard similarity index, which is the most popular sim-
ilarity measure between a pair of sets [2]. Let us con-
sider two sets X and Y for example. The conventional
Jaccard index is defined as J(X,Y ) = |X ∩Y |/|X ∪Y |,
where |Z| represents the number of elements contained
in the set Z. However, in our case, the weighted Jac-
card similarity index [7, 2] is more appropriate in the
sense that we can incorporate the importance of each
relevant visual word when evaluating the image similar-
ities, rather than simply counting the number of rele-
vant visual words in the union and intersection of the
two sets.

As described earlier, our bipartite graph is composed by
connecting an image with its relevant visual words, and
the weight of each edge is equivalent to the normalized
histogram coordinate value of the corresponding visual
word with respect to that image. Thus we can easily
compute the weighted Jaccard similarity index between
a pair of images by referring to their corresponding sets
of visual words X and Y , together with their corre-
sponding edge weights, as follows:

WJ(X,Y ) =

∑
n

i=1
min(Xi, Yi)∑

n

i=1
max(Xi, Yi)

(1)
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Figure 5. Discriminating car images using the support vector machine at multiple hierarchical levels. Images of the
training set are labeled as red (car images) and blue (others). The inferred region of the car images is rendered in
yellow through the Voronoi tessellation. (a) 10%, (b) 30%, (c) 40%, and (d) 100% of images. (#{visual words} = 100.)

where n denotes the total number of visual words con-
tained in the union of X and Y . Note that the numer-
ator is obtained by summing up the minimum values
between two weights of the edges emanating from vi-
sual words in X and Y , while the denominator is the
sum of the maximum values. Fig. 4(a) shows an ex-
ample, where the Xi and Yi are defined as normalized
histogram coordinates for the image nodes x and y, and
thus we can set (Xi) = (0.1, 0.3, 0.3, 0.2, 0.1, 0.0) and

(Yi) = (0.0, 0.0, 0.2, 0.4, 0.3, 0.1). This means that we
can compute the weighted Jaccard similarity index be-
tween the image nodes x and y as

WJ(X,Y ) =
0.0 + 0.0 + 0.2 + 0.2 + 0.1 + 0.0

0.1 + 0.3 + 0.3 + 0.4 + 0.3 + 0.1
=

1

3
.

Using the weighted Jaccard measure, we can iteratively
merge a pair of the most similar images into a group
one by one, and encode the clustering process as a den-



drogram tree representation as shown in Fig. 4(b). As
illustrated in this figure, we incorporate an image node
having a smaller number of child nodes into the other
image node representing more child nodes in our imple-
mentation.

Visualizing SVM-based Image Classification

We also equip our prototype system with an interface
for classifying images using support vector marching
(SVM). In practice, users are allowed to interactively
specify a subset of images as a training set for SVM-
based classifier together with the tags that represent
whether the corresponding images are classified into a
specific category or not. Nonetheless, conventional BoF
models just present the classification results only and
do not provide us with any information about how the
images are classified in the high-dimensional image fea-
ture space. When projecting the high-dimensional im-
age categorization onto the central disk region within
the anchored map, we introduced the Voronoi tessella-
tion technique in order to clarify how the region is parti-
tioned according to the image categorization. Here, we
employ the position of each image node as a seed point
for the Voronoi cell, and assign a specific color to that
cell according to its image category obtained through
the SVM classification. This successfully makes us con-
vinced with the image categorization provided by the
SVM-based classifier by visualizing the associated im-
age categorization within the anchored map represen-
tation. Note that, in our implementation, we incor-
porated a hardware-assisted algorithm for computing
Voronoi diagrams [6] and restrict the drawing area to
the central disk region of the anchored map using the
stencil buffer.

RESULTS

Our system has been implemented on a laptop PC with
an Intel Core i7 CPU (2GHz, 4MB cache) and 8GB
RAM, and the source code has been written in C++
using the OpenGL library for drawing graph layouts,
OpenCV library for SIFT feature extraction and SVM
learning models, and GAlib library for the implementa-
tion of the genetic-based algorithm. The images datasets
used in this paper were collected from Caltech256 [5].

Fig. 1 exemplifies how the underlying image categoriza-
tion can be better visualized by taking advantage of
the optimal ordering of visual words around the cir-
cular boundary of the anchored map representation.
Here, Fig. 1(a) shows the initial ordering of visual words
and layout of images in the dataset where images of
coins and spectacles are intricately mixed. On the other
hand, images of two categories are sufficiently discrimi-
nated in Fig. 1(b) when we rearrange the ordering of the
visual words using genetic-based optimization. The im-
age set exhibited in Fig. 5 contains images of three dif-
ferent objects, i.e., cars, tomatos and grapes from which
we try to discriminate car images specifically from the
others. For effectively handling a large number of im-
ages, we first compute a small number of image clus-

ters through hierarchical grouping of images, and dis-
tinguish car images from the others as our target using
the SVM-based image categorization. Note that here
the images outlined in red are labeled as example im-
ages within the specific category (i.e. car images), while
those in blue are images that are out of our target.
We then gradually decompose each image cluster into
smaller clusters, and adjust the image categorization by
interactively labeling a small number of images as the
training set according to their categories. This success-
fully allows us to enclose car images within yellow back-
ground region from the coarsest level to the finest (i.e.
original) level as shown in Fig. 5. Fig. 6 demonstrates
how we can categorize images of a specific category even
when we train our image classifier indirectly with simi-
lar looking images. In this case, we represent each image
in terms of visual words obtained from training images
containing tomatos, coins, and cars and try to collect
images of round shapes. However, we also take as input
images of additional categories such as CDs and glasses
in this example, while we still can categorize images of
round objects into our target category using the SVM-
based classifier, and clearly visualize the associated im-
age categorization both at coarse and fine levels through
the anchored map representation as shown in the figure.

CONCLUSION

In this paper, we have presented an approach to visual-
izing image categorization within the high-dimensional
feature space by taking advantage of the characteristics
of the BoF model. The idea behind our approach is
to extract the bipartite relationships between the input
images and visual words first and then visualize them
as a network using the anchored map representation.
This new type of dimensionality reduction framework
successfully convinces us of the plausibility of result-
ing image categorization based on the BoF model. The
readability of the anchored map representations have
been further enhanced by seeking the optimal circular
ordering of visual words and dendrogram-based hierar-
chical representation of images. Voronoi-based parti-
tioning has been also incorporated into the central disk
region of the anchored map to visualize the border of
some specific image category.

Fully classifying images of multiple categories according
to users’ preference remains to be tackled. The readabil-
ity of the anchored map representations also depends
on the quality of the sparse vector representations of
the images in terms of the extracted visual words. En-
hancing the interactivity of the present image retrieval
system is also left as a future research theme.
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