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a b s t r a c t

We present a novel vertex-splitting approach to iteratively resolve edge crossings in order to improve
the readability of graph drawings. Dense graphs, even when small in size (10 to 15 nodes in size)
quickly become difficult to read with increasing numbers of edges, and form so-called ‘‘hairballs’’. The
readability of a graph drawing is measured using many different quantitative aesthetic metrics. One
such metric of particular importance is the number of edge crossings. Classical approaches to improving
readability, such as the minimization of the number of edge crossings, focus on providing overviews
of the input graph by aggregating or sampling vertices and/or edges. However, this simplification of
the graph drawing does not allow for detailed views into the data, as not all vertices or edges are
rendered, and also requires sophisticated interaction approaches to perform well. To avoid this, our
locally optimal vertex splitting approach aims to minimize the number of remaining edge crossings
while also minimizing the number of vertices that need to be split. In each iteration, we identify the
vertex contributing the largest number of edge crossings, remove it, locate the embedding locations
of said vertex’s two split copies, and determine each copy’s unique adjacency. We conduct a user
study with 52 participants to evaluate whether vertex splitting affects users’ abilities to conduct a
set of graph analytical tasks on graphs 12 nodes in size. Users were tasked with identifying a vertex’s
adjacency, determining the shared neighbors of two vertices, and checking the validity of a set of paths.
We ultimately conclude that within the context of small, dense graphs, systematic vertex splitting is
preferred by participants and even positively impacts user performance, though at the cost of the time
taken per task.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

From social media to multi-omics interaction analyses, mod-
rn network visualization deals with increasingly large and dense
sub-)networks [1]. Visual analysis efforts of such networks focus
n understanding not only the importance of individual enti-
ies, such as genes or persons but also their in-between rela-
ionships, such as biochemical interaction types or social rela-
ionship statuses. These networks are most commonly visual-
zed as straight-line node-link diagrams, which illustrate entities
s points of potentially different shapes or colors, and edges
s straight lines connecting them (Fig. 1(a)). If not drawn by
and, such graphs are commonly laid out using force-directed
ayout algorithms, owing to their implementations’ availability
nd computational tractability, such as (extensions of) Eades [2],
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Fruchterman–Reingold [3], or Kamada–Kawai [4]. These tech-
niques optimize the graph’s drawing in terms of physically mod-
eled stress or cost functions. While some research effort has
been made to incorporate one [5,6] or multiple [7,8] graph aes-
thetic metrics into force-directed algorithms, the majority do
not. Subsequently, most readily available force-directed algo-
rithm implementations do not scale well visually to dense and/or
larger graphs, producing hard-to-read, or even completely unin-
telligible, drawings [9]; so-called ‘‘hairballs’’ [10,11]. While such
drawings may indeed effectively communicate the complexity of
the network in question, they fail to allow users to meaningfully
understand the network’s structure or any of its potential features
of interest [12]. To handle ‘‘hairball’’ effects in larger graphs,
existing work has focused largely on interactive graph summa-
rization [13], i.e. presenting graphs at different levels of detail.
By introducing such level-of-detail hierarchies, summarization
unavoidably manipulates graph topology, thereby altering the
perceived relationships within the graph and potentially confus-
ing the mental map created by the user. For completeness’ sake,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. A k = 7 complete graph, initially laid out using Kamada–Kawai (a), is iteratively split by hand, one vertex at a time, to resolve edge crossings (b–d) until all
are resolved (e). To do so, four nodes are split. Before being split, these nodes are visualized as gray circles with a colored border around them. After splitting, they
are shown as a correspondingly colored circle. It should be noted that, while the initial embedding (a) may be difficult to read, so is the final embedding (e). In (e)
specifically, while no edge crossings remain, the number of split vertices complicates the reading of the graph’s and individual node’s topologies.
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it should be mentioned that recent efforts have been made to
create such level-of-detail hierarchieswithout altering the graph’s
opology [14].

.1. The relevance of small, dense graphs

While graph data have become larger, the analysis and visu-
lization of small, dense graphs remain important challenges, as
omain experts are not only interested in a graph’s topology on
global but on a local level. Hence, many interactive techniques
nd tools, in line with Shneiderman’s ‘‘Overview first, details on
emand’’ mantra [15], aim to provide a summarized view of a
etwork’s topology from which a subgraph of interest can then be
nvestigated in more detail. For example, the Kyoto Encyclopedia
f Genes and Genomes (KEGG), currently has over 40, 000, 000
enes recorded [16–18]. Research has so far not attempted to
nderstand or navigate an organism’s complete network of genes,
etabolites, and chemicals. Instead, work focuses largely on vi-
ualizing and analyzing subgraphs, i.e. pathways, or collections of
uch subgraphs [19,20]. Outside of the context of KEGG pathways,
imilar Focus+Context visualizations of small subgraphs can be
ound in, for example, general systems biological network [21,22]
r social network visualization [23], just to name a few. Thus, as
isualization and visual analysis of small, dense graphs remain
elevant to domain experts, so does the search for aesthetically
ptimized embeddings of such graphs.

.2. Existing methods to edge crossings resolution

Within the context of smaller graphs (10 ≤ n ≤ 15), Pur-
hase et al. [24–26] extensively studied the importance of edge
rossings on user preference and performance. These findings
ere corroborated more recently by Kouburov et al. [27], who

ound that larger numbers of edge crossings indeed (statistically
ignificantly) negatively impact the accuracy and efficiency of
ser performance in smaller graphs (n = 40). Unfortunately,
inding some optimal embedding that produces the minimum
edge) crossing number k [28] is, even for highly restricted graph
classes [29], NP-complete [27,30]. Thus, beyond ‘‘simply’’ deter-
mining whether a planar k-crossing graph exists or what a graph’s
minimal crossing number k may be, extensive work has focused
on finding means of eliminating edge-crossings from non-planar
graphs [31,32]. One such example involves computing the mini-
mal sets of edges [33] or vertices [34,35] that must be deleted to
resolve all edge crossings. While this elimination of edge crossing
through the removal of some minimal set of edges or vertices
may be an interesting solution from a graph theoretic perspec-
tive, it is not a useful paradigm for domain experts. In many
biological and biochemical application domains, understanding
the relationships between, as well as the attributes of, all entities
of interest is crucial, making the outright removal of entities or
their relationships not practical.
449
1.3. Approach and contribution

In this paper, we propose an approach to reduce graph com-
plexity to improve the readability of graphs without removing
relationship or entity information that is agnostic of the graph
drawing method chosen. Our approach is centered on splitting
‘‘problematic’’ vertices, i.e., vertices whose edges are involved in
large numbers of edge crossings, in a graph’s drawing. As noted by
Henry et al. [36], a set of terms have been used interchangeably
to describe such approaches, such as duplicating, cloning, aliasing,
r mirroring. Here, we keep to the term vertex splitting, common
o the graph drawing community. Vertex splitting involves iden-
ifying a vertex v, removing it from the drawing, and replacing
t with two non-adjacent copies of v1 and v2, while the original
dges of vertex v are distributed across the two split copies [37].

As shown in Fig. 1(a) and Fig. 1(b), the orange-circled vertex in
(a) is selected, split in two, and each copy now visualized as
an orange-colored vertex (b). Importantly, the adjacency of the
original vertex is now shared across both copies.

Given some initial graph embedding, this splitting could be
achieved in a principled manner to optimize graph aesthetic
criteria [38]. As discussed previously, while many different aes-
thetic criteria influence a graph’s readability [26], overwhelm-
ingly, the number of edge crossings have been shown to negatively
affect user performance and preference. This is especially true for
smaller graphs, ranging in size from 10 to 20 vertices, [24,25,39].
However, vertex splitting approaches featured in literature are
not directly driven by graph aesthetic metrics, but an a-priori
selection of ‘‘problematic’’ vertices [40,41], or the simple complete
plitting of selected vertices based on groups/clusters featured
ithin the data [36,42,43]. To the best of our knowledge, there
xists no principled approach to vertex splitting which aims to
mprove graph aesthetic criteria.

The contribution of our work is the development, assessment,
nd discussion of a novel, iterative approach to vertex splitting
or static, straight-line graph drawings. Specifically, our approach
i) minimizes the total number of edge crossings in the embed-
ing, given a selection of embedding faces which (ii) maximizes
he number of edge-crossing-free connections, while (iii) split-
ing the minimal number of vertices necessary. We achieve this
y discretizing the graph drawing into edge-crossing-equivalent
olygons, i.e. polygons within which all points induce the same
umber of edge-crossings when connected to any vertex in some
raph drawing , thereby simplifying the search for a split vertex
opy’s placement within this embedding. To investigate the effect
f our vertex splitting on the readability of small graphs —here
2 nodes in size— for which the importance of edge crossings has
een thoroughly documented [24,25,39], we conduct a user study
ith 52 participants. The outcomes indicate that our approach
as the potential to improve readability and aesthetic quality in
tatic, straight-line graphs.
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. Related work

Many aesthetic criteria affect a user’s ability to effectively nav-
gate and analyze a graph drawing [26]. A criterion of particular
mportance is the number of edge crossings, which has been
ound to especially affect readability in small- and intermediate-
ized graphs [25]. In addition to drawing criteria, the size, density,
nd topological structure of a graph will also influence the layout
uality [44]. In this section, we summarize previous works related
o our proposed approach.

Graph Drawing and Graph Aesthetics— Heuristic-based graph
rawing, such as force or energy-based approaches, often produce
ifficult-to-read embeddings with poor graph aesthetic criteria,
s they optimize these criteria only indirectly [27]. However,
ork has also been done on rendering more readable graphs by
rawing them directly as a function of these aesthetic metrics. As
hese graph aesthetics often conflict with each other [45], most
uch approaches aim at satisfying either a single or a balance of
ultiple such criteria [46]. Indeed, the inclusion of one [5,6,46,47]
r multiple [7,8,48] such aesthetic criteria for classical graph
rawing approaches have been discussed for a while. Addition-
lly, multi-objective neural-network-based approaches to graph
mbedding have also found popularity [45,49]. However, owing
o their complexity and novelty, most approaches are simply not
eadily available.

Reducing Graph Complexity for Visualization—As the graph
ensity increases, theoretical graph drawing techniques can only
andle limited graph classes [50], which still cannot cover all
ypes of real-world graphs. To solve the hairball problem for prac-
ical analysis purposes, several approaches have been developed.
ne common strategy called summarization aims to abstract a
raph through vertex or subgraph aggregation, as summarized
n the survey by Liu et al. [13]. This strategy includes vertex
ggregation, where clustering that produces data hierarchy is
ften performed for interactive data navigation [51]. Another
echnique, edge aggregation, such as edge compression [52], edge
oncentration [53], and edge bundling [54,55] manipulate edge
opology and geometry for better visual quality. The two ideas can
e also adapted simultaneously. Dwyer et al. optimized power
raphs to achieve lossless vertex and edge aggregation, which
acilitates to follow paths in the graphs [56]. However, the prob-
em has been proven to be NP-hard and no scalable technique
s readily available. Simplification is another type of summariza-
ion, which deletes edges [33] or vertices [34,35]. In addition
o deleting vertices, OntoVis [57] simplifies graph topology by
lso removing duplicated paths. More recently, graph sampling
as been proposed to approximate large graphs for visualization
urposes [58,59]. The aforementioned approaches either remove
ata or require interaction [44], which is sometimes not preferred
or specific user tasks. Other techniques that use spanning trees
nd graphs as backbones [60,61] provided a partial solution—yet,
he complexity of edge rendering persists. Toroidal wrappings
llow for vertices, and thereby their edges, to be spread across
(2D) torus topology. This allows for links to wrap across the

ectangular view boundary, thereby reducing the number of edge
rossings had the network been embedded on a 2D surface [62].
uch embeddings not only improved the network’s aesthetics
etrics but also were shown to assist in user understanding [63].
owever, this comes at the cost of both time taken and accuracy,
specially for path tracing tasks [62,63].

Vertex Splitting in Applications—Vertex splitting is not a
rand new idea: several overview maps of pathway databases
ReconMap [64] and KEGG map [16]) incorporate vertex splitting

o reduce the visual complexity of pathway diagrams. However,

450
these diagrams are often designed and curated manually by illus-
trators. Due to this common usage of vertex splitting, the idea
has been investigated in several applied papers. For example, to
produce a fully planar drawing, the ontology tool OntoRama [40]
and the gene ontology tool TreePlus [41] allowed for vertices to
be cloned. Cross-linked vertices present in multiple branches are
simply fully duplicated to produce a more readable, tree-style
layout. Beyond tree graphs, Wu et al. [43] incorporate different
duplication schemes based on vertex properties and extend the
idea on multi-level clustered graphs [65]. Lastly, Nielsen et al. [66]
developed a learning-based approach to determine which vertices
should be duplicated based on human-curated graph drawings
featuring (iteratively) split vertices. However, these approaches
do necessarily tackle the challenge of readability. Complete split-
ting [40,41] may produce too many copies of the same vertex,
thereby hindering readability in and of itself; as discussed by
Henry et al. [36]. On the other hand, splitting a vertex once per
group assignment [43] does not necessarily ensure the readability
of each group individually. Such split vertices may still be respon-
sible for large numbers of edge crossings or be overly connected
to other vertices within the group. Splitting these vertices again
could further improve graph aesthetic criteria. Nonetheless, these
approaches are strongly bound with specific applications and
cannot be easily extended to more generic cases.

Vertex Splitting in Graph Drawing and Visualization—Beyond
the examples learned from application domains, previous re-
search tackled also more general solutions. The spring-based
layout algorithm of Eades and Mendoça [67] aims to split vertices
based on the ‘‘tension’’ of adjacent edges, to relax edge springs
in the embedding. They demonstrate that even their heuristic
approach allows for the resolution of edge crossings through
vertex splitting. Henry et al. investigated NodeTrix [36], a hybrid
visualization integrating node-link diagrams and matrix repre-
sentations. This work researches the users’ abilities on analytical
tasks pertaining to relationships, and our project is primarily
inspired by the positive findings of these two publications. Addi-
tionally, Lambert et al. [68] and Rohrschneider et al. [69] propose
approaches to duplicating vertices within and across metabolic
pathways. Additionally, vertex duplication has not been only used
for graph visualization but is also applied to improve the legibility
of Euler diagrams [42]. Lastly, Nöllenburg et al. [37] study the
vertex splitting problem from a theoretical perspective; given
some input drawing, they find that determining the smallest set
of splits to produce a planar drawing, is NP-complete.

In summary, to the best of our knowledge, the effectiveness
of vertex splitting has not been yet fully investigated in common
visualization scenarios, although it has been used in some prac-
tical applications. In this paper, we aim to develop and propose
a vertex-splitting approach to iteratively resolve edge crossings
with the purpose of improving the readability of graph drawings.
Our approach can be applied to network visual analytics by assist-
ing users to navigate and read graphs, while also retaining local
algorithmic guarantees.

3. Desiderata

Many different quantitative aesthetic metrics can negatively
impact the readability of a graph drawing [26]. As we are inter-
ested in improving these metrics in a given embedding, any one,
or multiple, metric(s) could form the basis of our vertex-splitting
approach. However, as the edge crossing criterion [29] forms
arguably the most important metric, especially for smaller graphs,
we opt to focus on resolving edge crossings [37] specifically.
Moreover, Eades and Mendoça’s heuristic approach to tension
reduction showed that splitting can indeed reduce the number of
edge crossings [70]. However, as highlighted by Henry et al. [36]
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plitting a vertex too often or splitting too many vertices, can
tself have an undesirable impact on readability (Fig. 1(e)). Ulti-
ately, we wish to resolve as many edge crossings as possible,
hile splitting as few vertices as necessary. To describe our goals
ore concretely, we define three desiderata which our approach
ims to locally guarantee, namely:

(D1) Minimize the Number of Vertices Split: As discussed by
enry et al. [36,71], too many split vertices, or a vertex split too
ften, can negatively impact a user’s ability to parse a graph’s
rawing. Thus, we aim to resolve as many edge crossings as
ossible, while locally minimizing the number of vertices to split.
hat is to say, we only ever split a vertex in two, i.e. the smallest
plit possible. Looking at Fig. 2 (D1), the orange embedding shows
ow edge crossings can be resolved by simply splitting a target
ertex completely, i.e. splitting it once for every one of its edges.
uch approaches result in a set of split copies of degree d(v) = 1
nd add unnecessary visual clutter. Instead, we thus opt to only
ver split a vertex in two, as seen in red, to ensure that splits
inimally affect readability.

(D2) Maximize the number of edge-crossing-free connec-
ions: Embedding a vertex in a graph drawing which minimizes
he overall number of edge crossings can be done in polyno-
ial time. However, currently available methods are not prac-

ical for real-world applications owing to the amount of time
eeded [72]. Thus, we first employ a straightforward heuristic for
he subsequent, and more general, desideratum D3: identifying
n embedding location that minimizes the vertex’s number of
dge-crossing-free edges to its neighbors. In essence, we must
irst identify the face which is incident to a maximal number
f neighbors of our vertex. For example, in Fig. 2 (D2) the red
mbedding is chosen over any of the orange ones, as the former
llows for 3 edge-crossing-free connections, compared to any of
he latter’s 2.

(D3) Minimize the Drawing’s Total Edge Crossings: While D2
llows us to identify a face f within which to embed a vertex v,
he vertices incident to f will most likely not encompass all of v’s
eighbors. Connecting to the remaining neighbors of v not inci-
ent to f will thus induce edge crossings, which will negatively
mpact readability [24,25,27,39]. Thus, within f , we must identify
here to place this vertex, such that the number of induced
dge crossings is minimized. In Fig. 2 (D3), the red embedding
s selected, as it only indicates 1 edge crossings, compared to the
induced by the orange drawing.

. Vertex splitting algorithm

Here, we first provide a high-level description of our algo-
ithm, visualized in Figs. 3–6 (a). Let G = (V , E) be our input
raph where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. We
dditionally consider a two-dimensional, straight-line drawing D
f G as input. Our algorithm functions in three steps:

Step 1: Target Vertex Selection First, the target vertex to
e split must be identified. To do so, all edge crossings in the
iven embedding are counted, each mapped to the edges’ incident
ertices (Fig. 3(a)). The vertex whose incident edges are involved
n the largest number of edge crossings is selected for splitting
Fig. 3(b)).

Step 2: Face Decomposition and Selection After removing the
elected target vertex from the embedding, in line with desider-
tum D1, we select only a pair of faces to embed each of the two
opies of the removed vertex. Moreover, we must also select a
ubset of the copies’ neighborhoods, namely the neighbors who
ill not induce any crossings in the input drawing Fig. 4(b), as
iscussed in desideratum D2. Note that we only split a vertex
451
Fig. 2. A visual example of the approaches three desiderata. (D1) visualized the
minimization of split vertices desideratum. Instead of resolving all edge crossings
possible, by simply splitting a vertex completely (as shown in orange), we
instead only ever split a vertex in two, as this is the smallest split possible.
(D2) showcases the maximization of edge crossing free connections desideratum.
Assume we aim to insert a single vertex into an existing embedding, adjacent
to a set of given set of neighbors (shown in dark gray). Instead of embedding
said vertex in any of the orange positions, which all only allow for 2 edge-
crossing-free connections, we embed this vertex as shown in red, where 3
adjacent vertices can be reached edge-crossing-free. Lastly, (D3) illustrates the
minimization of edge crossings desideratum. Given two split copies of a vertex
embedded within two faces that fulfill D1, we now must find the adjacencies
of each copy that minimize the total number of induced edge crossings. Here,
the orange set of vertices and edges is discarded, in favor of the red one, as the
former induces 2 edge crossings, compared to the latter’s 1.

into two at each iterative step. To do so, we start by computing a
planarization of D to identify a set of faces F = {f1, f2, . . . , fk}
Fig. 4(a)) that partition the canvas disjointly. When placing a
ertex v in a non-convex face f , there is no guarantee that we
ill be able to draw crossing-free edges between v and the
ertices incident to f . Thus, we compute a set of sight cells S =

s1, s2, . . . , sr}, which are convex polygons that partition non-
onvex faces (Fig. 4(b)). Note that an already convex face is its
wn sight cell.

Step 3: Subface Decomposition and Selection Given two
elected sight cells, we must now decide where within them to
lace each split copy of the selected vertex, such that the number
f induced edge crossings is minimized. To achieve this, sight
ells are further decomposed into subfaces; convex polygons that
ach form an equivalence class in regards to crossings (Fig. 5(a)).
ore precisely, for a region b ∈ B, any embedding of a vertex
within b will induce the same amount of crossings. Instead
f infinitely many possible embedding locations with a selected
ight cell, we can consider only a discrete set of subfaces within
t. Now, in line with desideratum D3, we can select a region for
ach of the selected sight cells such that the smallest number of
dditional edge crossings are induced when connecting them to
ertices non-incident to the selected (sub-)face (Fig. 5(b)).

Step 4: Embedding of the Split Vertex Copies With two
ubfaces selected, and the edge-crossing-minimizing adjacency of
ach subface determined, the final step is the simple embedding
f the two split vertices and the drawing of the edges between
heir neighbors. Again, only two split copies are created to adhere
o desideratum D1 (Fig. 6(a)). Similar to Riche and Dwyer [42], in
he interest of preserving the user’s Gestalt-theoretic [73] mental
ap of the original graph embedding (Fig. 6 (b)) as much as
ossible, the graph is not redrawn using spring embedding.
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Fig. 3. Step 1: Target Vertex Selection. In order to ultimately detect the vertex to split, we first count all edge crossings present in the provided graph embedding (a),
where edge crossings are circled in red. For each edge crossing, the two involved edges’ incident sets of vertices have their crossing numbers incremented. In order
to resolve as many edge crossings as possible, the vertex with the highest crossing number is selected as the target to be split (b), here vertex 2 . The canvas
border is shown in blue ( ).

Fig. 4. Step 2: Face Decomposition and Selection. The select target vertex, as well as its incident edges, are removed from the embedding, and the remaining graph is
planarized (a) using Planarization vertices, illustrated as smaller, unlabeled, dark gray circles ( ). All faces in the embedding can now be identified. Given desideratum
D2, we aim to maximize the number of edge-crossing-free connections when selecting the embedding faces. However, as not all inner faces (as well as the outer
face) are convex, they must be decomposed into convex sight-cells polygons (b). This is achieved through line projection and the placement of tiling vertices and
tiling edges within and until the canvas border, both shown in blue ( ). The selected sight cells are indicated as turquoise-color surfaces. As we are trying to achieve
this with minimal numbers of split vertices (D1), only two faces, i.e. splits, are selected.

452
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Fig. 5. Step 3: Subface Decomposition and Selection. In line with desideratum D2, given a minimization of the number of edge-crossing-free connections, we aim to
minimize the total number of edge crossings. To identify regions within the embedding that are equivalent in terms of their number of induced edge crossings, a
complete line arrangement drawing of all pairs of real vertices is drawn bounded by user-defined embedding limits (a). As we are interested only in placing vertices
within the two selected target faces (Fig. 4), we use these line segments to tile only them into sight cells in order to identify the pair of sight cells which induce the
fewest number of edge crossings possible when connected to the original target vertex’s neighbors (b). The newly placed tiling vertices and tiling edges are drawn
in brown ( ), as are the highlighted selected subfaces. The canvas border is shown in blue ( ).

Fig. 6. Step 4: Embedding of the Split Vertex Copies. We now place the two split copies at the centroids of the selected sight cells and connect them to all neighbors
vertices incident to their selected face (Fig. 3), as well as all other neighbors in accordance with their selected sight cell (Fig. 4(a)). Note the ‘‘suboptimal’’ placement
cased by separating out desiderata D2 and D3; placing it to the left of the edge connecting vertices 4 and 6 would have resolved an additional edge crossing.
The original, unsplit graph is presented for the sake of comparison (b). The canvas border is shown in blue ( ).

453
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.1. Step 1: Target vertex selection

The first step of the algorithm involves the identification of the
ertex to be split, based on the number of edge crossings in the
mbedding (Fig. 3(a)) The vertex involved in the largest number
f edge crossings must be identified (Fig. 3(b)). By selecting the
ertex with the largest number of edge crossings, we aim to
hereby also resolve the largest number of edge crossings associ-
ted with other vertices, in line with desideratum D3. Specifically,
or each e ∈ E, let cr(e) denote the number of edges that cross e.
or v ∈ V , let crn(v) denote the sum of cr(ev) where ev ⊆ E are

edges incident to v, i.e. crn(v) =
∑

cr(ev). All vertices are then
ranked by their number of edge crossings, i.e., crn(v). The vertex
with the largest crossing number is selected as the target vertex
to be split, its adjacency is recorded and subsequently removed
from the drawing D. Ties in vertices’ edge crossings numbers are
resolved based on their degree. To illustrate, consider the exam-
ple graph G(V , E) of size |V | = 8 shown in Fig. 3; (a) highlights all
edge crossings which ultimately leads to the selection of vertex
2 , as its crossing number, cr(v2) = 18, is the largest.

4.2. Step 2: Face decomposition and selection

Desideratum D2 states that we aim to not only minimize the
number of edge crossings in the embedding but also
maximize the number of edge crossing free connections. Thus,
when selecting a potential embedding location for a copy, we
first identify a face whose incident vertices are part of the split
vertex’s neighborhood. The aim of the second step of our algo-
rithm is to select two convex regions that jointly maximize the
number of edge-crossing-free-connections to the split vertex’s
neighborhood. First, we consider DP , a planarization of D, where
each line crossing induces a vertex in the graph. We obtain it
by placing a vertex called a planarization vertex on each crossing
and replacing the crossed edges by paths through that new vertex
(Fig. 4(a)). Since DP is a planar graph we can find its faces: F =

{f1, f2, . . . , fk}. However, as there is no guarantee that the faces
obtained after the planarization are all convex, we must further
decompose the faces into convex polygons to ensure incident
vertices can indeed be reached edge-crossing-free (Fig. 4(b)). Let
FC ⊆ F denote the set of faces which are convex, and FNC ⊆ F the
set of faces which are not convex, such that FC ∩FNC = ∅ and FC ∪

FNC = F . Returning to the previous example, Fig. 4(a) showcases
the planarization of the original graph with the selected target
vertex removed, and (b) illustrates both the decomposition of the
outer face into sight cells and the selection of two subfaces which
jointly maximize the number of edge-crossing-free connections.

4.2.1. Face detection and selection
To compute F , we adapt the graph minimum cycle basis al-

gorithm by Kavitha et al. [74]. For a Graph G with non-negative
edge weights, they define a cycle basis as a maximal set of linearly
independent cycles. Correspondingly, the minimum cycle basis is
the cycle basis whose sum of edge weights is minimal. However,
the minimum cycle basis only extracts cycles topologically and
does not necessarily correspond to a graph’s set of faces geo-
metrically. Thus, two additional steps have been incorporated to
identify drawing DP ’s faces (Fig. 7).

First, we must ensure that not just all vertices, but all edges
are traversed as well. To do so, we place a cycle vertex (shown
as in Fig. 7(a)) at the center of each edge in DP , and replace
his edge with a path through the newly placed vertex. Second,
e must ensure that all identified cycles are indeed faces, i.e., that
ach cycle does not contain any vertices or edges within it. If
n identified cycle does not contain any vertices within itself, it
s deemed a valid face. Otherwise, its subgraph, defined by the
 o
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Fig. 7. Given in (a) is a graph with vertices {A, B, C,D, E}. Cycle vertices, shown
as smaller, unlabeled circles, are placed at the center of all edges. The minimum
cycle basis is identified; here (A, E,D, B, A) and (C,D, B). Cycle (C,D, B) is a valid
ace. Cycle (A, E,D, B, A) is not, as it contains vertex C . Thus, the cycles’ subgraph
s extracted. Edge EBD mapped to one valid face (C,D, B) and is also part of the
raph’s outer face, so it is removed from the subgraph. The minimum cycle
asis is again identified for the pruned subgraph (b). The only identified cycle,
A, E,D, C, B, A), is now also a valid face.

ycle in question as well as all vertices and edges within it, need
o be extracted as shown in Fig. 7(b). From this subgraph, edges
re removed that can be mapped to two valid faces, or if it is
art of the cycle in question and already mapped to one valid
ace. The minimum cycle basis is now again identified within this
ubgraph, and the face-check is recursively repeated.
Lastly, to fulfill desiderata D1 and D2, we need to select

he two faces whose set of incident vertices, which are part of
he target vertex’s adjacency, is the largest. Ties are resolved
sing each edge’s absolute Euclidean difference from its Kamda–
awai’s graph-theoretic optimal length. Fig. 4(b) showcases the
election of target embedding faces. The selected target vertex
2 ’s neighbors were vertices v1, v4, v5, v6, v7. By selecting the
blue highlighted faces, namely { 1 , 7 , } and { 4 , 6 , },
4 or the 5 target neighbors can be reached edge-crossing free.

4.2.2. Decomposing non-convex faces
In accordance with desideratum D2, we aim to connect our

copies to a face’s incident vertices without inducing edge cross-
ings. For convex faces, this can be straightforwardly achieved.
For non-convex-shaped faces, however, this is not necessarily
possible. Here, to ensure that a non-convex face’s incidence can
be realized as edge-crossing-free connections, the connections
must be decomposed into convex polygons, which we call sight
cells. We denote our sight cells as S = {s1, s2, . . . , sr}. For a non-
convex face fk ∈ FNC , let its sight cells be denoted as Sk ⊆ S. These
sight cells are created by placing additional tiling vertices Vt and
tiling edges Et to DP (Fig. 8). Note that a convex face is its own
ight cell.
First, given a non-convex face f ∈ FNC , we identify at least one

ertex v incident for f whose incident edges form an inner angle
reater than 180◦. For each edge pair euv and evw , two rays are

projected from u and w respectively, through v (thus, inside f ).
e compute the intersection of each ray and the boundary of f .
t the location of the intersection, a new tiling vertex t ∈ VT is
laced, and the edge intersected is replaced by a path through
. An additional tiling edge connecting vertex v and t is added.
or example, in Fig. 8, a hypothetical, non-convex face {A, B, C,D}

s decomposed along the rays projected from edges eAB and eCB
s they form an angle greater than 180◦ around vertex B ,
esulting in sight cells (B, C, X, B), (A, B, Y , A), and (B, X,D, Y , B).
hese newly placed edges define the bounds of a vertex’s ‘‘line
f sight’’, i.e., a vertex can be connected edge-crossing-free from
ne side of this edge, but not the other. This is repeated for the
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Fig. 8. Illustration of the decomposition of some non-convex inner face
A, B, C,D, A). Incident vertices A and D are adjacent to the target vertex
o be split. Here, the angle formed by the edges incident to vertex B , (EAB)
and (EBC ) forms angle greater than 180◦ . Ray (AB) is projected until it intersects
he closest edge, ECD , where a new tiling vertex X is placed. The intersected
dge, ECD , is replaced by paths through that new vertex, i.e. ECX and EXD . A tiling
dge is created between the newly placed tiling vertex X and vertex B. This
rocess is repeated for ray (CB), creating tiling vertex Y . The identified sight
ells are, (A, B, Y , A), (Y , B, X,D, Y ), and (B, C, X, B). To illustrate the calculation
of sight cell incidence, consider sight cells (B, C, X, B). Lines, in blue, are drawn
between the sight cells’ centroid ( ) and the two vertices adjacent to the split
target. Vertex D can be reached without crossing any edges. Vertex A ,
owever, cannot, as the project line crosses the edge EBC . Thus, its incidence is
nly {A}. The incidence of the two remaining sight cells is {A, B}.

econd edge incident to v, as well as all other vertices incident
o f whose incident edges form angles greater than 180◦. The
subgraph defined by the vertices incident to f and its tiling
ertices and tiling edges undergoes planarization, and all of its
aces are identified as in Section 4.2.1. Finally, the incidence of
sight cell s is defined as the set of neighbors of the split vertex
hich can be reached from the centroid of s without crossing any
on-tiling edges. Convex faces may be considered their own sight
ells.
At this stage, the outer face e.g., (A, Y ,D, X, C, B, A) in Fig. 8,

an be considered a special case of a non-convex face, as unlike
nner faces, the outer face is not bounded. Thus, a rectangular
ound, the size of the drawing bounds, is added within which we
dentify the outer face’s sight cells (Fig. 4(b)). The decomposition
rocess is, however, largely the same with the exception that in-
ersections with the bounding rectangles must also be considered.
hus we obtain the drawing Dt . For an example of non-convex

face decomposition, consider the outer face’s decomposition in
Fig. 4(b) indicated in blue ( ).

4.2.3. Selecting sight cells
With all the incidences of the sight cells computed, we must

select a pair of sight cells in which we will embed each copy. In
line with desideratum D2, we aim to select two faces that jointly
maximize the number of unique incidence vertices. Moreover,
in line with desideratum D1, we only select two faces as we
only split the selected target vertex in two. Ties are resolved by
considering the absolute Euclidean difference between each edge
and its Kamda–Kawai optimal graph theoretic length; the smaller
the difference, the better.

We model each problem using an Integer Linear Programming
(ILP) formulation, where we have only integers as variables in
the linear system. We are given a set S of cells and the set N of
neighbors of the split vertex and look for the pair of sight cells
that maximize the incidence of crossing free edges to the copies
of the split vertex. We denote by s the ith sight cell, v the jth
i j
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neighbor of the split vertex, and ei,j the edge between a copy
embedded in cell si connected to vertex vj. We set si = 1 if a
copy is embedded into cell si, and set the value to 0 otherwise.
Similarly, if vertex vj has its incident edge to the split vertex
assigned to a copy embedded in cell si, then ei,j = 1. We maximize
the realized edges as:∑
i s.t. si∈S

∑
j s.t. vj∈N

ei,j (1)

under the following constraints: At most two cells can be se-
lected: if

∑
si ≤ 2, a neighbor can only be assigned to one cell

(meaning the copy to be embedded in that cell): if
∑

i ei,j ≤ 1 for
each neighbor vertex. Additionally, a neighbor cannot be assigned
to a cell that has no been selected: si ≥ ei,j. Lastly, if there is
no direct visibility between the neighbor and the sight cell, no
crossing free edge can be drawn to a copy embedded in that sight
cell. We consider ai,j the binary variable that denotes with ai,j = 1
the direct visibility of neighbor j to cell si. Thus, our last constraint
is ei,j ≤ ai,j.

Fig. 5(b) shows the selected sight cells as blue-shaded ar-
eas. These particular sight cells happen to correspond to the
previously selected faces, as discussed in Section 4.2.1.

4.3. Step 3: Subface decomposition and selection

With two sight cells selected, we must now determine where
within each face to embed the split copy of the target vertex.
More specifically, in line with desideratum D3, we must find the
locations which jointly minimize the number of remaining edge
crossings, when connecting to the split vertex’s two copies to
neighbors not incident to either selected face.

4.3.1. Line segmentation
Given DT , the drawing in which each face is a sight cell we cre-

te a drawing DR by drawing lines between vertex pair (Fig. 5(a)).
Note that, unlike the version presented by Sanatnama et al. [72],
we are not considering an arrangement of lines, but rather of seg-
ments as we end the line segments on their intersection with the
outer bounding rectangle. This allows us to skip area candidates
located outside of the drawing canvas. Similar to the previous
planarization steps, we replace crossing lines with non-crossing
paths of segments, and we identify a set of cells in the resulting
drawing. These cells are called subfaces B = {b1, b2, . . . , bg}
(Fig. 5(b)). Note that there is a unique mapping of each subface
to the face in F it belongs to.

Sanatnama et al. [72] proved that for such a decomposition of
the space, all points within a particular subfaces are equivalent
to one another in terms of the number of edge crossings induced
when connecting to other vertices in the graph drawing. How-
ever, in line with desideratum D2, we do not consider all subfaces,
but only those within the two selected sight cells (see Fig. 5(b)).
Lastly, we compute the centroids of all the subfaces within the
two selected faces. For each centroid c and each neighbor u, we
store the number of crossings induced by the edge ec,u in an array.
Using this array, we solve the problem by selecting one subface in
each of the sight cells previously selected. Fig. 5(a) showcases the
line decomposition of the previous example graph. The project
lines are drawn in yellow ( ), terminating just beyond the user-
defined canvas bounds shown in blue ( ). Once planarized, like
the graph of Fig. 4(a), the line segmented graph’s faces can be
identified, highlighted as yellow-shaded areas in Fig. 5(b).
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.3.2. Subface selection
We use a similar process as for the sight cell selection step, but

ather than having as input the visibility between the neighbors
f the split vertex and the candidate sight cells, we have as input
he number of crossings xi,j that would be induced by an edge
between a vertex vj and a copy of the split vertex embedded
in subface bi. We minimize the number of crossings using the
following objective function:∑
i s.t. bi∈B

∑
j s.t. vj∈N

xi,j (2)

For each sight cell we only want to select one sight cell,
∑

bA(i) ≤

where bA corresponds to the subfaces of one of the previously
elected sight cell, and bB the others. We use the same constraint
or the bB. Similarly to previously, we define a constraint that
imits a neighbor to be assigned to only one subcell, and addi-
ionally to a sight cell that has been chosen. This ILP returns the
wo subfaces which induce the least amount of crossings, as well
s the assignments of the neighborhoods to the subfaces. Fig. 5(b)
ighlights the selected subfaces as yellow-shaded areas. Here, the
ubface incident to vertex 4 allows for the connection to target
neighbor 5 by only inducing two additional edge-crossing.
dmittedly, in this case, that would have held for all subfaces
ithin the selection sight cell in question.

.4. Step 4: Embedding of the split vertex copies

With two subfaces selected based on the induced number of
dge crossings to non-sight cell-incident vertices, the process of
mbedding the two split copies is straightforward. While more
omplex embedding rules based on other graph aesthetics, could
ave been chosen, we simply put each copy on the coordinates of
he centroids of the selected subfaces. Alternatives include basing
he exact embedding location on the best edge-angle ratio or
dge-angle ratio. Edges are subsequently drawn according to the
ssignment we just obtained (see Fig. 6(a)). Comparing this new
mbedding to the original graph drawing of Fig. 6(b), it has indeed
uccessfully resolved 16 of the 18 edge crossings that vertex 2
’s incident edges were involved in.

4.5. Implementation

The algorithm was implemented in Python around the Net-
workX [75] package. Specifically, we used its implementation of
the Kamada–Kawai [4] and Kavitha et al.’s [74] algorithms. The
implementation is made publicly available on GitHub at https:
//github.com/henry-ehlers.

5. User study design

Lastly, we are interested in evaluating how this approach to
vertex duplication affects a user’s ability to perform a set of
commonly encountered graph analysis tasks. These tasks and the
data analyzed are representative of actual types of analyses a user
could expect to face when visually analyzing or reading graph
drawings. For the purpose of aesthetic simplicity, split vertex
embeddings were limited to inner faces only.

5.1. Tasks

Within the context of the work of Lam et al. [76] on proposing
a high-level taxonomy of information visualization tasks, we are
interested in obtaining subjective user feedback on perceived ef-
fectiveness and preferences, i.e., user experience, and an objective
measure of how well and quickly users performed select tasks,
i.e., user performance. For the latter, we can further couch our
456
objective evaluation goals within the mid-level typology of task
types by Brehmer et al. [77]. Specifically, we are primarily inter-
ested in evaluating how effectively a user can locate or extract
information in a split graph, as compared to a non-split graph.
Depending on whether the target entity is clear, or its location
known, the tasks performed fall within the Search category and
its four subcategories of Lookup, Browse, Locate, or Explore [77].
astly, we define the three actual (or low-level) tasks for users to
erform based on Lee et al. [78] taxonomy of graph analysis tasks.
ere, we focus primarily on topological and browsing tasks, as
e suspect these to be most affected by splitting operations [36],
ut also lend themselves more readily to objective measurement.
ithin the category of topological tasks, we define two task types

of interest, T1 and T2, and within the browsing tasks category, we
define a final task T3. Thus, our study comprises the following
three tasks:

T1 Vertex adjacency, i.e., identifying which vertices are adjacent
to some given vertex;

T2 Common connections, i.e., identifying the set of vertices
adjacent to two given vertices; and

T3 Path tracing, i.e. identifying which of a set of paths is indeed
possible in the given graph drawing.

Each of these three tasks was presented to each participant
twice; once for the normal Kamada–Kawai [4] embedded draw-
ing, and once for that graph’s split drawing, with randomized
vertex labels.

5.2. Data

Normal Drawings—To produce graphs with small-world prop-
erties, we simulate three networks using the Watts–Strogatz
graph model and embedded using Python’s NetworkX ’s [75] im-
plementation of the Kamada–Kawai algorithm [4]. To ensure that
the drawings had sufficient crossings for splitting while remain-
ing readable for non-graph experts, we specifically simulate these
graphs with a number of vertices n = 10, a mean degree m = 6,
and a rewiring probability p = 0.5. The non-split graph cases, as
selected for the study, are depicted in the upper row of Fig. 9,
i.e. graphs Anormal, Bnormal, and Cnormal.

The small number of vertices n = 10 was selected for three
key reasons. First, the (statistical) importance of edge crossings
for graphs such small sizes has been thoroughly documented [24,
27], thus presenting a compelling argument for vertex splitting to
be applied to graphs of this size. Second, as the participant list
includes non-graph-experts and to ensure enough participants
could be gathered, a smaller number of vertices was selected to
ensure the study need not take longer than 20–30 min in total
to complete. And lastly, our approach was able to consistently
produce aesthetically sensible and pleasing results for graphs of
such sizes. The combination of mean degree parameter m = 6
and rewiring probability p = 0.5 were selected to ensure that
at least 2 split vertices were needed to resolve 50% of the edge
crossings in the embedding.

Split Drawings—Comparable to the study performed by
Kobourov et al. [27], each of these three graphs was iteratively
split until 50% of the original embedding’s edge crossings were
resolved. As identifying the aesthetically optimal number of
splits is beyond the scope of this paper, we opted to resolve 50%
of edge crossings as, in informal previous testing, we found it
provided enough challenge for users without being completely
overwhelming. Specifically, to ensure participants would actu-
ally complete the study, we aimed for a completion time no

https://github.com/henry-ehlers
https://github.com/henry-ehlers
https://github.com/henry-ehlers


H. Ehlers, A. Villedieu, R.G. Raidou et al. Computers & Graphics 116 (2023) 448–463

s
s
l
T

l
o
c
a
a
s
l
c

5

w
a
m
b
e
g
t
p
f
w
t
h

Fig. 9. Three Watts–Strogratz-simulated graphs, (A), (B), and (C), presented to participants during the conducted user study. All graphs were simulated using the
ame parameters of n = 10, m = 6, and p = 0.5. Each graph was laid out using Python’s NetworkX library’s Kamada–Kawai spring embedding (normal) and then
plit until 50% of the original drawing’s edge crossings were resolved (split). Please note that, for illustration purposes, the graphs presented here neither have their
abels randomized, nor their positions inverted. Split vertices share the same label and are color coded (e.g., 8 or 9 ) to communicate that they have been split.
hese graphs’ vertices and labels have been enlarged threefold for the sake of readability in print.
H

onger than 30 min. In order to ensure split vertices were rec-
gnizable in non-interactive visualization, split vertices were
olor-coded using a color-blind-friendly palette [79]. Lastly, to
void any learning effect, each graph has its labels randomized,
nd the original drawing had each vertex’s positions inverted. The
plit graph cases, as selected for the study, are depicted in the
ower row of Fig. 9, i.e Asplit , Bsplit , and Csplit . These are the split
ounterparts of the upper row of the figure.

.3. Hypotheses

User Performance—Before beginning the study, participants
ere instructed on what graph drawings are, what split vertices
re, and how the three tasks were to be performed. Users were
ade aware of the fact that the accuracy and time taken were
eing evaluated. Over the course of the anonymous evaluation,
ach participant was presented with each of the three simulated
raphs. Such a within-subject experimental design was chosen
o ensure we had each user’s performance across all tasks and
reference for both unsplit and split graphs. For each graph, once
or the split and once for the non-split drawing, participants
ere tasked with answering one of the three aforementioned
asks (T1–3), as accurately and quickly as possible. Each task

ad a multiple-choice list from which to select the set of correct

457
answers, which were known to us. Each participant was randomly
assigned to one of the six unique assignments of tasks to graphs.
The randomization ensured that no participant saw the same
graph twice, be it split or unsplit. Additionally, the order in which
graphs, tasks, and multiple-choice answers were presented was
also randomized to ensure no potential learning effect. Thus, each
participant was presented with six questions in total, i.e., vertex-
adjacency for a normal and split graph, common-neighborhood
for a normal and split graph, and path validity for a normal and
split graph. For each question, we recorded the time taken by the
participant, as well as the accuracy of the answer, measured as
the percentage of choices correctly selected. For this performance
evaluation, we posit the following hypotheses:

H1 The accuracy of determining a vertex’s adjacency is positively
affected by splitting operations, because each individual
vertex drawing’s degree is lower and, thus, its neighbors
are easier to identify.

2 The accuracy of determining the common neighbors of two
given (split) vertex will be positively affected, as the con-
nectivity of individual vertex is clearer.
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Fig. 10. Vertex Splitting applied to a Watts–Strogratz simulated graphs with numbers of vertices n = 15, mean degree of m = 6, and rewiring probability of p = 0.5:
(Original Embedding) shows the initial Kamada–Kawai spring embedded drawing, and (Split Embedding) the drawing produced by splitting vertex 4 .
3 The accuracy of determining whether a path exists is neg-
atively affected by splitting operations, as a path pass-
ing through a split vertex necessitates scanning all copies
of the vertex to determine whether the next connection
exists.

4 The time necessary to answer all of these questions will be
negatively affected by splitting operations, as more vertices
are present in a drawing.

User Preference—Additionally, we are interested in evaluating
ser preferences. As outlined by Lam et al. [76] we aim to evaluate
ach participant’s perceived effectiveness and preference, i.e. user
xperience. Specifically, at the end of the study, for each task,
ach participant was asked (i) whether they believed split em-
eddings allowed them to answer questions more accurately, and
ii) whether split embeddings allowed them to answer questions
ore quickly. Additionally, to evaluate usefulness and preference,
e additionally probe whether split graphs are easy to learn,
nd easy to use. We also probe whether they are aesthetically
referable over non-split graphs [80]. All answers were given
n the form of a 5-level Likert scale; (1) strongly disagree, (2)
isagree, (3) neutral, (4) agree, and (5) strongly agree. For this
reference evaluation, we posit the following hypotheses:

5 Users will aesthetically prefer split over non-split drawings
of graphs, as these feature fewer edge crossings.

6 Users will find split graphs difficult to learn, as especially
tasks such as path identification and common neighbor-
hoods, involve some initially counter-intuitive thinking.

7 Users will find split graphs more difficult to use, for reasons
similar to those in H6.

. User study results

52 participants took part in this anonymized, crowd-sourced,
nline user study. Users were encouraged to use large mon-
tors when performing the study. In this setting, cheating was
458
technically not preventable or controlled. The study was not pre-
registered. Participants were invited by snowballing, i.e. reaching
out to university and academic contacts who were also encour-
aged to forward the study invitation to contacts of theirs. As
all submissions were anonymous, we do not know exactly who
participated in this study. Most participants fell within the 21–25,
26–30 and 31–35 year old age brackets with 9, 21, and 15 people
respectively. Moreover, of the 52 participants, 18 self-reported
being experienced with graphs, 18 as very familiar, and 6 as expert.
Only 1 self-reported as being completely unfamiliar, and 9 as not
very familiar. Most participants had completed either a Master’s
degree (28) or a Ph.D. (13), though 8 reported having completed
a Bachelor’s degree. Lastly, 16 participants identified as female,
25 as male, and 1 as non-binary. All participants had normal
(potentially corrected) vision. As assumptions of normality could
not be made or validated for the data at hand, answer accuracy
and time taken per task were analyzed using a two-sided, paired
Wilcoxon Signed Rank test (Figs. 11 and 12). Preferences were
analyzed using a two-sided, one-way Wilcoxon Signed Rank test
(Fig. 13) [81]. When probed using Wobbrock et al.’s [82] Aligned
Rank Transformed ANOVA, no statistically significant or substan-
tively notable association between the expertise of users and
their performance or preference was found.

6.1. User performance

Task accuracy—P-values for a study such as this should be
viewed with skepticism. However, it is interesting to note that
the differences in answer accuracy were statistically significant
for both the Vertex Adjacency and Path Tracing tasks, in favor
of split graphs (Fig. 11). However, likely a product of the small
graphs used in this study, the actual differences in answer ac-
curacy observed are fairly small, i.e., ∆VertexAdjacency = 0.091,
∆CommonNeighbors = 0.043, and ∆PathTracing = 0.101 These findings
are in agreement with hypotheses H1, i.e., that splitting would
positively affect the user’s ability to determine the adjacency of
given vertices, and H2, i.e., that splitting would positively affect
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he user’s ability to determine the common neighbors of two
iven vertices. Interestingly, while we hypothesized that vertex
plitting would negatively impact the accuracy of path tracing in
3, the opposite appears to be found. The results of this analysis
re shown in Fig. 11.

Task completion time—In agreement with H4, the time
eeded to complete tasks was negatively impacted by vertex
plitting, though, again, the mean differences were very small,
VertexAdjacency = 1 second, ∆CommonNeighbors = 5 seconds, and
PathTracing = 10 seconds. Differences were statistically significant

or both the Common Neighbors and Path Tracing tasks, where
ore time was required to complete the tasks with the split
raphs. The results of this analysis are shown in Fig. 12.

.2. User preference

Interestingly, participants showed a fairly strong preference
or split over non-split graphs (Fig. 13), with an average Likert
cale agreement of 3.89 with the statement ‘‘I found split graphs
ore aesthetically pleasing ’’, agreeing with our hypothesis H5.
articipants also reported split graphs as being both easy to learn
nd understand, disagreeing with our posited hypotheses H6 and
7. Lastly, on average, users perceived correctly that split graphs
llow them to answer all questions more accurately, though no
efinitive conclusions regarding perceived completion time could
e made. The results of this analysis are shown in Fig. 13.

.3. Results summary

In summary, we find that vertex splitting does not meaning-
ully affect the users’ ability to identify shared neighbors given
wo vertices. Vertex splitting even improves the accuracy in iden-
ifying the adjacency of a given vertex or checking the validity
f a set of given paths. However, it also negatively affected the
ime taken to perform the three tasks—in particular the identifi-
ation of valid paths. Furthermore, participants reported notable
esthetic preference for split over non-split drawings of the graphs
hown. Participants also found split graphs easy to learn and
nderstand. All in all, these results showcase that vertex splitting,
nd our approach to vertex splitting, could be useful in improving
he readability and aesthetic quality of small graph drawings.

. Discussion and future outlook

While we hope to have demonstrated that vertex splitting, and
ur approach in particular, can be useful in assisting users for
mall graph drawings, a number of issues, both conceptual and
omputational, remain to be addressed in future work.

.1. Algorithm and implementation

Computational Scalability: To ensure such an approach could
ind application to larger and denser graph drawings, a more
omputationally scalable approach to the face identification prob-
em is needed as our current approach is centered around Kavitha
t al.’s [74] O(m2n) minimum cycle basis detection algorithm
s implemented in Networkx for m edges and n vertices. This
mplementation forms the key bottleneck at three steps, namely
he detection of sigh cells, the detection of subfaces, and, most
everely, the detection and (recursive) checking of faces (Fig. 14).
ere, moving the implementation out of Networkx would al-
ow for the planar graphs to be stored as a rotation system,

.e. circular, doubly-connected edge lists, with pointers to faces.

459
Fig. 11. Box plot of performed paired Wilcoxon signed rank test [83] for answer
accuracy across the three task types (T1–3). P-values are calculated using a null
hypothesized difference of µ0 = 0. At an a-priori specified significance level of
α = 0.05, accuracies are statistically significantly different. More specifically, for
1 and T3, users were more accurate when using split graphs, with a median
ifference of 11.1% and 20.0%, and p-values of pT1 = 0.000003 and pT2 = 0.0144,
espectively. Task T2 was not statistically significant between groups with a
edian difference of 12.5% and pT1 = 0.1104.

Fig. 12. Box plot of performed paired Wilcoxon signed rank test [83] for the
time taken to answer the three task types (T1–3). P-values are calculated using
a null hypothesized difference of µ0 = 0. At an a-priori specified significance
level of α = 0.05, the differences in time taken are statistically significantly
different for T2 and T3. More specifically, users were slower using split graphs,
ith a median difference of 6.17 s (∼ 13.9% slower) and 8.61 s (∼ 14% slower),
nd p-values of pT2 = 0.036 and pT3 = 4.967E−05 , respectively. Task T1 was not
tatistically significant between groups with a median difference of 0.306 s and
T1 = 0.866. .

Fig. 13. Box plot of performed paired Wilcoxon signed rank tests [83] on Likert-
scale user responses. Answers range from 1 (Strongly Disagree) to 5 (Strongly
Agree). P-values calculated with a null hypothesized value of µ0 = 3. At an a
priori specified significance level of α = 0.05, T1, T2, and T3 were all statistically
significant with median differences of ∼ 4.5, and p-values of 4.436E − 08,
2.656E − 07, and 6.665E − 05, respectively.

Additionally, moving the entire implementation to a more effi-
cient, low-level programming language, or potentially paralleliz-
ing the face identification on GPU, could be useful in making this

approach applicable to larger systems.
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Beyond Edge Crossings: While this approach produces more
esthetically pleasing results for smaller graphs, it fails to do
o consistently for increasing numbers of vertices. For example,
onsider in Fig. 10 the edges placed between the top-most split
opy of vertex 4 and vertices 9 and 10 , which are difficult
o distinguish from one another. Here, a more sophisticated cost
unction incorporating not only the number of edge crossings,
ut other quantitative graph aesthetic criteria, would allow for
better selection of target vertices, sight cells, and subfaces. Ad-
itionally, such criteria could assist in choosing better embedding
ocations within selected subfaces. Here, some aesthetic criteria
f interest could include, for example, edge crossing angles, edge
ength ratios, edge angle ratios, vertex density, or edge/vertex
cclusion [26]. For the example given above, the edges e(9,4)

and e(10,4) would produce a poor edge angle ratio, guiding the
algorithm away from that particular embedding location. Addi-
tionally, this could allow for a more sophisticated approach to
tie resolution. Currently, selected target vertex (Fig. 3), sight cell
(Fig. 4), and subface (Fig. 5) ties are resolved quite naively, such
as vertex degree to select an ultimate target vertex to split from
a set of vertices with identical crossings numbers. In general,
the application of vertex splitting to improve aesthetic criteria
beyond edge crossings would be interesting. Of course, the inclu-
sion of such additional criteria would also bring with it additional
computational cost as well.

Beyond Local Optimality: Given a more computationally
tractable implementation, one could consider relaxing desidera-
tum D2, the minimization of edge-crossing-free connections, and
focus instead only on desideratum D3, the minimization of the
total edge-crossing number. The unfortunate side effect of first
satisfying desideratum D2 and then D3 can be seen in Fig. 6(a),
where the lower of the two split vertices is suboptimally placed.
Had it been placed to the left of the edge connecting vertices
4 and 6 , instead of the right, one additional edge crossing
ould have been resolved. However, as the embedding face was
elected before the subface within it, these two faces were tied in
he number of incident adjacent vertices during the face-selection
tep. Here, instead of selecting a face and then a subface within
t, this would allow for the straightforward selection of 2 (or
) subfaces from the line-segment-tiled embedding (Fig. 5(a)).
hile the tiling of the entire embedding would be more compu-

ationally expensive, it would also allow for the identification of a
ertex split configuration that minimizes the number of crossings
or this graph embedding.

Beyond Single Splits: In line with desideratum D3, i.e. min-
mizing the number of split vertices, we only split a selected
ertex in two. However, beyond identifying where to embed
plit copies, it would be interesting to also identify how many
plits are necessary to minimize the selected graph aesthetic cost
unction. On the one hand, extending the ILP selection of sight
ells and subfaces to allow for a selection of arbitrary numbers of
plits would be conceptually straightforward. On the other hand,
t would also necessitate tiling more sight cells into subfaces,
hereby introducing additional computational overhead.

Combining a priori, Interactive, and Algorithmic Splitting:
t would be interesting to combine this technique with existing
pproaches to vertex splitting, such as a priori specification of
ertices to split completely. Such a priori split vertices would
robably resolve many aesthetic issues from the beginning, mak-
ng the subsequent algorithmic splitting operations easier and
aster. Alternatively, an interactive, human-in-the-loop approach
o graph drawing could allow users to select vertices to split
nd/or embedding locations, which could side-step some of the
460
Fig. 14. Cumulative empirical (logarithmic) runtimes of vertex splitting method
evaluated on k-complete graphs of increasing size, from k = 6, 8, 10, 12 and
14. Time was collected for the 6 steps of the algorithm, namely Select Vertex
(Fig. 3(a) and (b)), Decompose Faces (Fig. 4(a)), Subface Selection (Fig. 4(b)), Line
Segmentation (Fig. 5(a)), Sight Cell Selection (Fig. 5(b)), and Embed Split Vertex
(Fig. 6(a)). For each scenario, 100 graphs were simulated and the time taken
to perform these steps was recorded; shown as light gray lines and points. For
each k graph, the smoothed average run time and 95% confidence interval of its
100 runs is calculated and overlaid in color. As expected, the face decomposition
step, reliant on Kavitha et al.’s [74] O(m2n) algorithm, where m and n denote the
number of edges and vertices respectively, forms the computational bottleneck
of our implementation. .

computational and conceptual complexity discussed. This would,
of course, also require additional features, such as interactive
highlighting of split copies [36].

Compromising the Mental Map: Motivated by the preser-
vation of a user’s mental map, graph drawings were not re-
embedded after each vertex split. For graphs of this size (10 ≤

n ≤ 15) and density, this approach still functions. However, even
for graphs of size |V | = 20, we encounter several limitations.
First, as the number of vertices increases, so does the complexity
of the line segmentation (Fig. 5(a)), resulting in smaller and
smaller subfaces. Embedding a split vertex copy within such a
subface can cause considerable occlusion of both incident and
nearby edges, as well as nearby vertices. Moreover, for graphs
of high edge density, a single split will often not resolve many
edge crossings, and necessitate either splitting said vertex not
twice, but k times, or splitting additional vertices. Here, allowing
for a split graph drawing to be re-embedded using, for example,
Kamada–Kawai, would allow for better graph aesthetic criteria
in the final drawing, as well as additional edge crossings to be
resolved ‘‘passively’’.

7.2. User performance and graph aesthetics

Extending the User Study: While the results of this user study
are promising, and corroborate the findings of Henry et al. [36],
they are, of course, limited by the size and complexity of the
graphs chosen. Here, a larger user study featuring larger and
denser graphs [27], more varied graph analysis tasks [78], and
graphs simulated using various graphs models [84–88], would
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rovide the opportunity to more completely investigate the effect
f vertex splitting on both performance and preference. Of course,
his would also necessitate a much larger number of participants,
nd then require the use of a crowd-sourced or Amazon Mechan-
cal Turk approach to data acquisition. However, such a study
ould be instrumental in uncovering both how and when to split,

n order to most effectively assist users.

A Quantitative Evaluation: Beyond studying user performance
nd preference, it would be valuable to study the effectiveness of
uch an approach to vertex splitting quantitatively. More specifi-
ally, it would be interesting to calculate graph aesthetic metrics,
eyond simply the number of edge crossings, for multiple graphs
imulated using different random graph models, vertex sizes,
nd fixed split numbers, to observe how these metrics change
cross iterations (i.e. splits). Combining such empirical results
ith an additional user study could help us understand when
ertex splitting is useful and most appropriate. This could be as
imple as understanding for what graph sizes and edge densities
sers prefer split over non-split graphs, or to what degree they
o so. This could subsequently lay the groundwork for developing
graph-aesthetic-based stopping criterion for vertex splitting.
eyond the number of edge crossings resolved, such a stopping
riterion could be based on, for example, edge angle ratios, edge
ength ratios, or (remaining) edge crossing angles.

Application to Real-World Networks: Our results showcase
the potential for vertex splitting as a means of improving read-
ability. However, owing to the computational complexity of our
approach, we are currently limited to smaller, but also in-silico
esults. Subsequently, beyond extending our method along the
ines discussed here, studying their utility to actual biological
athways, social networks, or transportation networks would be
nteresting. Adapting our approach for such real-world networks
ould present additional domain-specific challenges, such as
anonical, and potential non-straight line, representations, such
s transportation maps or hand-drawn embeddings, and analyti-
al tasks that may be negatively affected by vertex splitting.

. Conclusion

Here, we have presented a novel, systematic approach to ver-
ex splitting for static, straight-line graph drawings, agnostic of
ow their embedding was produced. We have shown its applica-
ility to small-scale graphs. A conducted user study demonstrated
hat (this particular approach to) vertex splitting allowed the
sers to answer three graph analysis tasks more accurately, at
he cost of requiring additional time to do so. Additionally, these
plit graphs were aesthetically preferred over non-split graphs,
hile still being considered easy to understand and learn. These
esults, as well as the pragmatic use of vertex splitting in the
ield, indicate to us that vertex splitting could be a useful ap-
roach to making dense graphs more readable. We note a sizeable
ap between graph theory and visualization application when it
omes to the study of vertex splitting; a gap hopefully closed with
uture research. Beyond making this approach more computa-
ionally scalable, its immediate application to small-scale domain
etworks, such as metabolic pathways, would be an interesting
ext step.
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