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Abstract. Interpreting a node-link graph is enhanced if similar sub-
graphs (or ‘motifs’) are depicted in a similar manner — that is, they have
the same visual form. Small motifs within graphs may be perceived to
be identical when they are structurally dissimilar, or may be perceived
to be dissimilar when they are identical. This issue primarily relates to
the Gestalt principle of similarity, but may also include an element of
quick, low-level pattern-matching. We believe that if motifs are iden-
tical, they should be depicted identically; if they are nearly-identical,
they should be depicted nearly-identically. This principle is particularly
important in domains where motifs hold meaning and where their identi-
fication is important. We identified five small motifs: bi-cliques, cliques,
cycles, double-cycles, and stars. For each, we defined visual variations on
two dimensions — same or different structure, same or different shape.
We conducted a crowd-sourced empirical study to test the perception
of similarity of these varied motifs, and found that determining whether
motifs are identical or similar is affected by both shape and structure.
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1 Introduction

As they attempt to understand complex natural, technical or social phenomena,
application domain experts use graph models to analyze intricate relationships.
They often resort to graph visualization tools to navigate in and make sense
of such data [22]. Much work has also looked at the automatic extraction of
graph motifs [29], and at counting them [18], to characterize important graph-
level properties. Graph motifs are simply local connectivity patterns, or small
sub-graphs, lying within graphs; see Fig. 1(a). They can be elementary motifs,
like triangles, or assembled into higher-order motifs, like chains and cycles [16].
Given their role in anticipating the behavior of the graph at hand, there is so
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far little work dedicated to the visual perception of graph motifs. In particular,
existing graph visualization tools are usually not designed to ensure that similar
graph motifs take a similar graphical form.

Fig. 1 uses a five-cycle motif to exemplify the problem of visual matching
of graph motifs. Motif nodes are highlighted in black, while other nodes are
grey. In Fig. 1(a), the base shape places the motif nodes on the vertices of
a regular pentagon. In Fig. 1(b), the same structure is also drawn as a regular
pentagon, subject to a rotation. Compared to the drawing of the base shape, one
might hypothesize that users will recognize that the two motifs are identical. In
Fig. 1(c), the motif is drawn as a quadrilateral, with the fifth node lying within,
making it harder to match it to the base shape. In Fig. 1 (d), the pentagon shape
is preserved despite the addition of an edge to the motif. The rationale is that a
small structural change should be commensurate to the induced change of shape.
In Fig. 1(e), both the structure and the shape are different to the base motif
and its shape, which users should see easily. Section 3.1 discusses the full list of
motifs considered in this study (see Fig. 3-Fig. 7).

In this paper, we explore the perception of (identical or similar) sub-graphs
by conducting an empirical study which asks participants to compare (identical
or similar) depictions of sub-graphs. Our results include evidence that depicting
identical sub-graphs differently makes them harder to recognise as the same, and
depicting different sub-graphs similarly results in false identically judgements.

2 Background and Related Work

Similarity is essential in knowledge development as it allows us to organize prin-
ciples to classify, form, and generalize concepts [40]. It also serves as a common
measure for comparison purposes or tasks in data visualization [23]. Specific
shapes in visualization, such as Star Glyphs [12], Scatterplots [30], and Directed
Acyclic Graphs (DAGSs) [2], have been considered as factors that influence hu-
man similarity perception. One particular usage of similarity in graph analytics
is motif analysis, because structural motifs in graphs often act as influential
building blocks in many domains [37], such as biology [33], social science [45],
internet communication, and others. Therefore, visually identifying these sub-
graph structures (motifs) facilitates effective comparisons among various data.

2.1 Perception of Similarity and Shape

Our research questions draw on well-established research on human perception.
Ware’s three levels of perceptual processing [44] start with a ‘bottom-up’ stage
that processes low-level visual properties in parallel, identifying, e.g., colour,
texture, movement etc.; it is quick, automatic and data-driven. The ‘pattern
recognition’ second level comprises sequential processing of the scene, recog-
nising patterns, contours, and regions. The slower third level ‘top-down’ phase
sequentially explores the scene to identify objects, typically engaging cognition



(a) Base motif (b) Same—étructure/ (c¢) Same-structure/
same-shape different-shape

(d) Different-structure/ (e) Different-structure/
similar-shape different-shape

Fig. 1: Example ‘cycle’ motif drawings. (a) shows the base shape and structure
are regular and well-formed; nodes are placed on a pentagon. (b)—(e) show vari-
ations of shape (visual form) and/or structure (connectivity).

for the completion of a specific task. The first level includes the immediate iden-
tification of prominent objects which ‘pop-out’, being of obvious different visual
form to those surrounding them. The visual features that result in pop-out are
of varying effectiveness: colour is the most obvious one; others include texture,
orientation, size, shape, curvature [39]. The Gestalt laws [8,20] describe how we
see patterns and groups, and relate to the second of Ware’s levels. Distinct ob-
jects may be seen to form a group by being close together (proximity), looking
similar (similarity), or moving together (common fate), etc. This paper consid-
ers the quick recognition of shapes and the Gestalt law of similarity in graph
drawing: if two sub-graphs are of the same structure, then depicting them in the
same visual form will ensure that they can be quickly recognised as the same; if
they are of similar structure, then depicting them in the same (or similar) visual
form will highlight their similarity. We investigate the immediate recognition of
same (or similar) sub-graphs rather than serial processing requiring the use of
cognition because making similarities immediately prominent can help in gain-



ing a better (and quicker) overall understanding of the structure of a graph at a
glance. Comparing sub-graphs with enough time to engage cognitive processes
is simple; making such comparisons quickly may not be. Our research questions
focus on determining whether depicting identical sub-graphs using the same (or
similar) shape facilitates the recognition of their identicality. We also explore
what happens when the sub-graph structure is slightly different, and when its
presentation is distorted by additional forces within a force-directed algorithm.

2.2 Related Work

Prior work has investigated the perception of graph properties, such as graph
density, clustering coefficient [36] and layout types [21]. Although the perception
of shapes in sub-graphs per se has not yet been fully investigated with respect to
sub-graph structure, some studies of shapes in visualization have been conducted.
Gogolou et al. investigated if time series visualizations generated from auto-
matic similarity measures are aligned with readers’ similarity constraints [14].
They concluded that the selection of visualizations influences the patterns that
readers consider as similar. Ballweg et al. researched the influencing factors of
directed acyclic graphs (DAGs) when they are drawn as layered drawings [2].
Their study suggests that the similarity perception of DAGs is mainly affected
by the number of levels in the drawings, the number of nodes on a level, and
the corresponding overall shape (i.e., convex hull of the DAG), while Wallner
et al. [41,42] did not find significance in the perception of overall shapes. Tarr
and Pinker studied the effect of mental rotation in shape recognition, focusing on
letter-like asymmetrical characters [38]. They found that trained readers can rec-
ognize the characters almost as fast at all familiar angles, while the performance
varies when the character appears at novel angles.

Besides perceptual studies, several graph drawing algorithms incorporate
shapes (i.e., motifs from different graph classes [1]) to improve layout readability.
Yuan et al. developed an algorithm based on Laplacian constrained distance em-
bedding to control the shapes of sub-graphs input by the users [48]. Wang et al.
generalized the classical stress majorization approach [43], to ease sub-graph
shape manipulation. Meidiana et al. extended the classical force-directed and
stress minimization algorithms to optimize shape-based metrics measure [11] to
achieve faithful drawings [28]. Interactions through aggregation [24] and simpli-
fication [10] also consider motif properties to reduce layout visual complexity.

In practice, many applications consider the visual form of motifs, including
transcriptional regulation networks analysis [17], phylogenetic trees compari-
son [6], biological pathways diagrams [48], metro maps creation [3,46], dynamic
graph analysis [7], and visual graph matching [15], for example, across distinct
layers of a multilayer graph [27]. In this paper, we demonstrate the benefit of
depicting motifs within graphs in a consistent, well-formed manner.



3 Methodology

3.1 Stimuli

Structural motifs often bind with semantics in applications for analysis purposes
(Section 2.2) [16]. For example, a clique (or a bi-clique) in social networks repre-
sents strong mutual connections [45], and a cycle in biological networks indicates
a circular biochemical reaction [26,34]. We hence identified five ‘motifs’: small
sub-graphs with well-defined graph structure, distinct visual form, easy descrip-
tion and clear definition. We denote these motifs (the graph structure along
with node positions) as our ‘base’ motifs; see Fig. 2. For each base motif, we
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(a) bi-clique (b) clique (c) cycle ) double-cycle ) star

Fig. 2: The five base motifs.

created 12 variations according to two dimensions: change of structure (Yes/No)
and change of shape (Yes/No), where shape is determined by the convex hull of
nodes (smallest convex set containing all nodes). There are hence four quadrants.

The same-structure/same-shape (SS) variations depict the same graph
structure and same visual form as the base, rotated by 90, 180, 270° (45, 90 and
135° for double-cycles which have two axes of symmetry (Fig. 5 (top left)).

The same-structure/different-shape (SD) variations use the same graph
structure as the base motif but a different shape; we generated three different
drawings by varying the relative positions of nodes (e.g. Fig. 3 (bottom left)).

The different-structure/similar-shape (DS) variants adopt a different
graph structure to the motif; we change the number of edges (deleting one,
deleting two, or adding one) while keeping node positions as in the base — giving
them a similar (but not identical) shape (e.g. Fig. 3 (top right)). As edges can
not be added to the clique motif, we remove three edges (Fig. 6 (top right)).

The final different-structure/different-shape (DD) collection adapts
the original motif sub-graph as for the DS variants, but depicts them using
different node positions from the base motif. The three DD variants of the base
motif differed both by structure and visual form (e.g. Fig. 3 (bottom right)).

The motif variations are: bi-clique (Fig. 2 (a)), clique (Fig. 2 (b)), cycle (Fig. 2
(¢)), double-cycle (Fig. 2 (d)), and star (Fig. 2 (e)).

Each motif set therefore comprises 13 different visual motif drawings which
were integrated into graphs, a total of 65 graph drawings. The graphs and graph
drawings were subject to both structural and layout constraints (Section 3.4).
Motif nodes were coloured black, all others grey.
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Fig.3: 12 variations in shape and/or structure of the star motif.
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Fig.4: 12 variations in shape and/or structure of the cycle motif.

3.2 Experimental Design

For each motif, we explored participants’ ability to assess the identicality or sim-
ilarity of motifs in two graph drawings, with each participant working with only
one motif. In Experiment 1, we explored the effect of motif shape; in Experiment
2, we explored the effect of motif shape distortion. Although the 48 trials for
Experiment 1 were interspersed with the 40 trials for Experiment 2, since their
aims and stimuli were different, this first section focuses on Experiment 1.
Each trial consisted of a pair of graph drawings displayed side-by-side, with
each drawing containing a highlighted motif. Participants were asked to indicate
the degree of similarity between the structure of the two motifs. For each motif,
the base motif graph drawing (or one of its rotations) was paired with all other
12 motif variant drawings, giving a total of 48 trials. The position of the two
drawings in each trial (left or right) was randomly determined. Fig. 8 shows the
case of a rotated star motif on the right, with the base star motif on the left.
Since we are interested in bottom-up immediate processing, and how known
shapes can be identified quickly, we limited the length of time allocated for each
trial to 4 seconds — a duration determined by pilot testing of the complete exper-
iment with 15 participants which considered 3, 4, and 5 seconds as possibilities: 4
seconds produced sufficient variability in accuracy to avoid floor (too hard) and
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Fig.5: 12 variations in shape and/or structure of the double cycle motif.
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Fig. 6: 12 variations in shape and/or structure of the cligue motif.
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Fig. 7: 12 variations in shape and/or structure of the bi-cliqgue motif.

ceiling (too easy) effects. Participants judged similarity on a scale by choosing
among: ‘identical’, ‘similar’, ‘not so similar’ and ‘completely different’.
3.3 Experimental Procedure

We used Prolific [31] to recruit participants for our study and Qualtrics [32]
to implement the survey. The simplicity of our experiment makes it suited for



crowd-sourcing [5], enabling collection from a large number of participants per
motif. Participants were paid £9 per hour, with a median completion time of
10.4 minutes. They were recruited from the UK and required to use a desktop
machine (no mobile devices). We ran five within-subject studies, one for each
motif, and 30 participants per motif. 46% identified as women, 52% as men,
1% as non-binary/gender diverse, 1% declining to answer. 38% were 18-35, 28%
were 36-45, 15% were 46-55, and 19% over the age of 55.

Participants were shown six ‘practice’ stimuli pairs for which data was not
collected. These helped mitigate against the learning effect that can affect within-
subject studies, as did the randomization of trials for each participant. The data
from participants with response rate less than 85% were discarded, and missing
responses from the remaining participants were not included in the calculation
of mean accuracy data. Each participant saw each trial exactly once.

3.4 Implementation

Graph generation and motif integration The motifs were integrated into
larger 50-node graphs, generated using a k-nearest neighbor model with k=3
[9,25]. Each graph motif was ‘stitched’ into the larger graph by connecting each
motif node to up to three non-motif nodes, chosen uniformly at random (though
we modify the graph post-layout). Since the drawings focus on the highlighted
motifs, the specific properties of the overall graphs (beyond their size) is not
relevant. A different graph was created for each of the 13 stimuli, for each motif.
The constraints on the graph generation were: (GC1) All motif nodes must have
at least one edge to a non-motif node. (GC2) The graph must be connected.

Graph drawing We use multidimensional scaling (MDS) for graph layout
[13,49] for its ease of use in adding constraints and reliability in representing
geometric structures. The constraints on the creation of the graph drawings
were: (GD1) Motif nodes are fixed on the plane, so they keep the desired vi-
sual form, with the rest of the graph laid out around them. This is the basis
of our research. (GD2) No motif node may be on the periphery. (GD3) Edges
connecting non-motif nodes must not intersect edges within the motif, since this
would change the visual form of the motif and will hamper its recognition in an
uncontrolled manner.

We modify the MDS algorithm with an extra parameter F', standing for the
set of motif nodes whose position is fixed: F' = {v|v is a node in a motif }. Each
member of F' is ‘pinned’ in the plane so that their positions will not be updated,
but the surrounding graph drawing will still be based on graph-theoretic dis-
tances. More formally, given a graph-theoretic distance matrix d, and a set of
nodes with fixed position F', we want to find

. 2
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If a drawing produced by Equation 1 does not meet these requirements,
we attempt to modify the drawing to fit. Since the constraints are not always



Do the two highlighted sections represent the same friendship relationships?

() They are identical
(O They are similar
(©) They are not so similar

() They are completely different

Fig. 8: Example trial — star: same-structure/different-shape (left); base (right).

simultaneously satisfiable, when they conflict we discard that drawing and try
again with a new random graph. To satisfy GD2, we compute the convex hull
of the layout, and if any motif node lies on the hull, we try again.

GC1 and GD3 often conflict. To resolve, we first look at all possible O(|V|?)
line segments and categorize them as inwvalid if they violate GD3, i.e., if they
intersect edges within the motif, or as wvalid otherwise. Then, we count and
remove any invalid non-motif edge (an edge with an endpoint not in a motif).
If some motif nodes are left without non-motif edges, we satisfy GC1 by adding
to each such motif node the edge that is valid and whose endpoint is nearest.
Clearly, GC1 is satisfied as we have added edges to each node which did not
satisfy it, and we can verify that we did not violate GD3 in the process.

The removal of tnvalid edges might yield a graph that is too sparse to be
realistic. We add as many valid edges as the invalid edges that were removed,
shortest length first. Finally, we check if GC2 is met; if not, we iterate until
all constraints are met. All code is available at https://github.com/Mickey253/
graph-rep-sym.
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GED=0|GED=1|GED=2|GED=3
identical 1 0.6 0.3 0
similar 0.6 1 0.6 0.3
not so similar 0.3 0.6 1 0.6
completely different 0 0.3 0.6 1

Table 1: Participant responses (rows) mapped to graph edit distance (columns).
If participant response was similar for GED=2, accuracy is recorded as 0.6.

4 Results

4.1 Dependent variable

Each trial asked the participant whether the motifs were identical, similar, not so
similar or completely different. In the presented social media context, we asked:
“Do the two highlighted sections represent the same friendship relationships?”.

Measuring accuracy as a binary result (the structure is identical or not)
removes subjectivity from the response, but ignores the fact that some structures
are more different than others. We therefore use an accuracy measure based on
graph edit distance (GED) [35]. We determine the GED between a pair of sub-
graphs: identical (GED=0); one edge difference (GED=1); two edges difference
(GED=2); three edges difference (GED=3). For each of these GEDs, we score
the participants’ accuracy responses as shown in Table 1.

Experiment 1: Fixed Shape Motifs The pairs of graph drawing stimuli
presented to the participants included the base motif in one drawing, paired
with each of the 12 other stimuli. For each of the five motifs, we address the
questions:

Q1: Does rotation affect the perception of the same sub-graph represented
using the same visual form?

We consider the same-structure/same-shape variations where the base motif is
compared to three of its own rotations. We expect that there will be no difference
in accuracy. A repeated measure ANOVA test (Table 2 (a)) shows no significant
differences, suggesting that the participants were able to correctly recognise the
same motif, presented in the same-shape, regardless of its orientation. This result
accords with that of Tarr and Pinker who studied the effect of mental rotation
in shape recognition, focusing on letter-like asymmetrical characters [38].

Q2: If the motif is adapted to create a sub-graph of different structure, does
depicting it in a similar manner affect the ability to distinguish the difference
(or would it be better to depict it using a clearly different visual form?)

We compare the results of different-structure/similar-shape with different-struc-
ture/different-shape, expecting that using a similar shape will help in identifying



(a) Q1: Effect of rotation on determining whether two motifs are identical

bi-clique clique cycle double-cycle star
F (df=2) 0.476 0.783 0.492 0.129 0.146
p 0.623 0.459 0.613 0.879 0.865

(b) Q2: Effect of depicting different structure with similar or different
shapes

bi-clique clique cycle double-cycle star
t (df=29) 3.289 2.168 4.230 0.923 3.780
p (1-tailed) 0.001 0.019 <0.001 0.181 <0.001
(c¢) Q3: Effect of using different shapes for the same sub-graphs
bi-clique clique cycle double-cycle star
t (df=29) 11.071 11.215 13.360 7.807 19.059
p (1-tailed) <0.001 <0.001 <0.001 <0.001 <0.001

(d) Q4: Effect of different edit differences in different sub-graph structures.
The trend line shows accuracy from no edit distance (left) to maximum
edit distance (right); the accuracy scales are different for each motif

bi-clique clique cycle double-cycle star
F (df=3) 11.817 19.719 3.07 28.850 36.84
p <0.001 <0.001 0.031 <0.001 <0.001
Trend line | // AN //'/4 —_ \

Table 2: Summary of results for Experiment 1.

structural differences in the sub-graphs. A repeated measures t-test (Table 2 (b))
showed that the accuracy for different-structure/similar-shape was significantly
better than different-structure/different-shape for all motifs, except double-cycle.

Q3: Does using a different layout affect perception of motifs of the same
structure? If the motifs are identical, does it matter if they are depicted
using different visual form — or should they be depicted in the same form?

We compare same-structure/different-shape and same-structure/same-shape, ex-
pecting that using the same shape for the same structure will produce better
accuracy than using a different shape for identical structures. A repeated mea-
sures t-test (Table 2 (c)) showed that accuracy was significantly better for same-
structure/same-shape than for same-structure/different-shape, for all motifs.

Q4: If different sub-graphs are depicted in similar shape, are near-similar
sub-graphs incorrectly assessed as being similar?

That is, does the edit-distance between pairs of sub-graphs depicted in similar
visual form affect accuracy when determining whether they are identical or not?

Here, we focus on the three different variations in the different-structure/simi-
lar-shape stimuli, each of which has a different GED with respect to the base



Fig.9: (left) Cycle motif same-structure/different-shape variation introducing
unnecessary edge crossings; (right) the same graph drawn using MDS.

motif. We also include one of the same-structure/same-shape comparisons, where
GED=0. We expect that where the edit distances are small, the participants were
more likely to misjudge two different sub-graphs depicted similarly as identical.
A repeated measures ANOVA (Table 2 (d)) confirmed that there was an effect
of edit distance, for all motifs, where accuracy generally increased with edit
distance, with the greatest edit distance accuracy being at least that of the
comparisons where GED=0 (those where the base motif was rotated).

This result confirms our suggestion that the comparisons were made sponta-
neously — that is, in parallel, rather than serially. If they were serial, participants
would have compared the motifs edge-by-edge, and accuracy for the smallest edit
distances would have been higher. The spontaneous, parallel pattern matching
means that stimuli of the most similar structure are incorrectly seen as identical.

There are a few noticeable data points in this trend analysis: for double-cycle
and star, adding two edges leads to lower accuracy — both these extended motifs
include at least one edge crossing. Yet, this conclusion does not extend to the
bi-clique motif, although we note that the starting point of the bi-clique trend
(when GED=0) is already a low accuracy score.

4.2 Experiment 2: Unconstrained Layout

Here, we used stimuli where the motif nodes positions were ‘fixed’, but were
distorted by MDS forces applied by surrounding nodes. For all Experiment 1
stimuli, we created a paired ‘flexible’ alternative, removing the three GD con-
straints of Section 3.4, using the unmodified algorithm from [49] (Fig. 9).

Our trials comprised the ‘fixed’ version of a motif paired with all variants
of the ‘flexible’ version, and participants were asked to judge similarity (as in
Experiment 1). In each of the four (shape x structure) quadrants (Section 3.1),
we pair the three variants with the drawings of the same graphs rendered by an
unconstrained layout, resulting in 36 pairs (4 x 3 variants (fixed) x 3 variants
(flexible)). We also include the four base motif orientations: a total of 40 pairs
for each motif. For each motif, our research question is:



same-structure/same-shape

bi-clique clique cycle double-cycle star
t (df=29) 8.692 11.611 7.380 10.485  22.254
p (one-tailed)| <0.001 <0.001 <0.001 <0.001 <0.001
same-structure/different-shape
t (df=29) 6.649 2.582 1.658 5.477 8.847
p (one-tailed)| <0.001 0.007 0.054 <0.001 <0.001

Table 3: The effect of using well-formed shapes to match sub-graphs.

Q5: Is it easier to match identical small motifs if they have both been given
a well-formed, regular shape (as opposed to one of them having their shape
distorted by forces applied to nodes in the rest of the graph)?

We focus on same-structure stimuli, since the question relates to identical struc-
tures, considering the shape dimension. The same-structure/same-shape stimuli
are rotations of the base; the same-structure/different-shape stimuli, while using
a different shape, are still regular and well-formed. We expect that the accuracy
in matching two identical motifs with well-formed shapes will be higher than for
the flexible condition (when the motifs are visually distorted). A repeated mea-
sures t-test (see Table 3) showed that the accuracy when comparing two motifs
with well-formed, regular shape was always significantly better than when one
of the motifs had a distorted form, except in the case of the cycle. We note that
the alternative well-formed, regular form of the cycle was one where two versions
included unnecessary edge crossings; see Fig. 9.

5 Discussion

Our research questions addressed how visual form (shape) affects the interpre-
tation of the abstract structure of a graph. We showed that by depicting two
similar sub-graphs similarly, participants achieved high accuracy for all motifs
but the double-cycle (Q2). The double-cycle is the largest motif of the five, and
our shape variations for it are all roughly two polygons sharing a segment. One
possible cause for this is that participants were able to mentally transform the
base motif (a mirrored pentagon) to the other shapes (triangle, rectangle). As a
result, to gain the benefit of representing similar structures as similar shapes, it
may be enough that there is a simple transformation between them, e.g., rotation
or translation.

The clear recommendation for visualization designers is that when supporting
a task to identify sub-graphs one should ensure that identical sub-graphs are
drawn similarly. We have shown that rotation does not have any effect (see Q1),
so this is a degree of freedom in visualization design, e.g., rotation of fixed motifs
can be done to reduce edge crossings while maintaining shape. However, the



shape of a sub-graph does have an effect; depicting identical sub-graphs using
different shapes hampers the recognition of similarity (Q83). This means that
even if two sections of a node-link diagram represent the same relationships, if
they are drawn completely differently, one might never notice. When supporting
this type of task, shape cannot be overlooked. Designers can also remember that
evaluation of similarity is done quickly (see Q4), so should be careful not to
depict dissimilar structures using the same shape or one might wrongly interpret
the data. The results of both Q3 and Q4 seem to indicate that a viewer will
interpret similar shapes as having similar structures, regardless of ground truth.

The results of Q3 and Q4 can apply beyond the simple five-node motifs
we have demonstrated. For instance, graphs with large defined clusters are often
depicted with each cluster being drawn as large roughly circular dense regions. If
the shape of these regions is roughly the same, a viewer is likely to interpret these
large structures as being equivalent. If within-cluster structure is very different
between clusters, a designer would want to make this apparent by ensuring these
clusters make dissimilar shapes.

The MDS layout algorithm tends to depict cycle motifs as (roughly) circles
similar to our defined motif, and this is reflected in the data; see Table 3. Though
the star motif is isomorphic to the cycle, comparing the star shape introduced
noise that caused participants to not recognize the same structure, another point
to show that it is important to represent similar structures with similar shapes.
We note as well the star motif is not a planar drawing, where the cycle is. Further
motif comparison can be found in the appendix.

6 Conclusion

To better understand the role of spontaneous processing on the representation
of sub-graphs in node-link diagrams, we conducted a user experiment to address
research questions relating to the perception of both structure (relations in the
sub-graph) and shape (visual form). Amongst other findings, we conclude that
presenting identical motifs using identical (or rotated) visual motif drawings
makes a difference to the ease with which they can be matched.

We considered small motifs (5-8 nodes) in sparse, relatively small graphs.
Further work includes determining whether the same results hold for larger mo-
tifs or graphs, or for other graph representation idioms (e.g., adjacency matrices
or arc diagrams), since the same pattern-matching and bottom-up spontaneous
processing issues also apply. Larger, different motifs could be studied, integration
into denser graphs, or considering more (and more radical) variations of shape
and structure.

Since we have shown that the shape of a motif affects how an individual recog-
nizes it, layout algorithms that extract similar graph motifs and draw them using
a similar form would highlight their similarity. Techniques exist to accommodate
user constraints such as node positions [4,19,47], but combining this idea with
motif extraction may present algorithmic problems and perceptual outcomes.
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