
Lines: 81

Untangling Almost Outerplanar Drawings
Sujoy Bhore !�

Université libre de Bruxelles, Belgium

Guangping Li !�

Algorithms and Complexity Group, TU Wien, Vienna, Austria

Martin Nöllenburg !�

Algorithms and Complexity Group, TU Wien, Vienna, Austria

Ignaz Rutter !�

University of Passau, Passau, Germany

Hsiang-Yun Wu !�

Research Unit of Computer Graphics, TU Wien, Vienna, Austria

Abstract1

Given an n-vertex outerplanar graph G, let δG be a straight-line drawing of G, where the vertices2

lie on a circle and all crossings involve a single edge. We call such a drawing an almost outerplanar3

drawing. An outerplanar drawing of G can be obtained from δG by untangling it, i.e., moving the4

vertices on the circle in δG. Let fix◦(δG) denote the maximum number of vertices that can remain5

fixed to untangle δG. We show fix◦(δG) ≥ d(n+ 2)/2e and this bound is asymptotically tight.6
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1 Introduction7

A graph is an outerplanar graph if it has a planar drawing in which all vertices are on the8

boundary of a single face, and such a drawing is known as an outerplanar drawing. Given an9

n-vertex outerplanar graph G, let δG be a straight-line drawing of G, where the vertices lie10

on a circle and all crossings involve a single edge. We call δG an almost outerplanar drawing.11

Since G is outerplanar, an outerplanar drawing can be obtained from δG by moving the12

vertices on the circle. We call such a sequence of vertex moving operations an untangling13

of δG. We define the outerplanar fixing number fix◦(δG) of an almost outerplanar drawing14

δG to be the maximum number of vertices that can remain fixed in an untangling of δG.15

The notion of untangling is often used in the literature for a crossing elimination procedure16

that makes a non-planar drawing of a planar graph crossing-free; see [?, 6, 7, 10, 18, 24, 25, 29].17

Here, we follow an untangling procedure to obtain an outerplanar drawing from an almost18

outerplanar drawing.19

2 Lower Bound for fix◦(δG)20

In the following let G = (V,E) be an outerplanar graph, let δG be an almost outerplanar21

drawing of G, let e = uv ∈ E be the edge that contains all the crossings in δG, and let22

G′ = G− e and δG′ = δG − e. The edge e partitions the vertices in V \ {u, v} into the sets L23

and R that lie left and right of the edge uv (in the direction from u to v). We claim that it is24

possible to move vertices of L to the right side without modifying the order of R ∪ {u, v} to25

obtain an outerplanar drawing. By symmetry, it is also possible to just move vertices of R to26

the left side. The claimed bound then follows from the fact that min{|L|, |R|} ≤ b(n− 2)/2c.27

We distinguish cases based on the connectivity of u and v in G′.28
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(a) Case 1 (b) Case 2.2 (non-connecting component)
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Figure 1 Moving a left component, keeping/reversing the clockwise ordering of its vertices.29

Case 1: u, v are not connected. Consider a connected component C of G′ that contains30

vertices from L and from R. In this case, C contains at most one of u, v. W.l.o.g., assume31

v /∈ C; see Figure 1a. Let v′ be the first clockwise vertex after v that lies in C. Let δ′G be the32

drawing obtained from δG by moving the vertices of C ∩ L clockwise just before v′ without33

changing their clockwise ordering. Observe that this removes all crossings of e with C.34

Case 2: u, v are connected. Now assume there exists a connected component in G′ that35

contains both u and v. Note that if C ′ is a different connected component of G′, then it36

must lie entirely to the left or entirely to the right of e. We ignore such components as they37

never need to be moved. We hence assume that G′ is connected.38

Case 2.1: u, v are 2-connected. Then δG is already planar; see Lemma 6 in Appendix A.39

Case 2.2: u, v are connected but not 2-connected. G′ contains at least one cutvertex40

that separates u and v. Notice here, each path from u to v visits all these cutvertices between41

u and v in the same order. Let f and l be the first and the last cutvertex on any uv-path,42

respectively. Additionally, add u to the set of L,R that contains f and likewise add v to the43

set of L,R that contains l. Let X denote the set of edges of G′ that have one endpoint in L44

and the other in R. Each connected component of G′ −X is either a subset of L or a subset45

of R. we call these left and right components, respectively. We call a component of G′ −X46

connecting if it either contains u or v, or removing it from G′ disconnects u and v. For a left47

component CL and a right component CR, we denote by E(CL, CR) the edges of G′ that48

connect a vertex from CL to a vertex in CR. We refer for the proofs to Appendix A.49

I Lemma 1. Every non-connecting component C is adjacent to exactly one component C ′50

of G′ −X. Moreover, C ′ is connecting, there are at most two vertices in C ′ that are incident51

to edges in E(C,C ′), and if there are two such vertices w, x ∈ C ′, then they are adjacent and52

removing wx disconnects C ′.53

I Theorem 2. Let C be a left (right) non-connecting component. It is always possible to54

obtain a new almost outerplanar drawing δ′G of G from δG by moving only the vertices of55

C \ {u, v} to the right (left) side.56

Proof. If C is non-connecting, then by Lemma 1, it is adjacent to at most two vertices in57

C ′ that are adjacent to C. If there are two such vertices, denote them by w and x. Note58

that w and x are consecutive in the drawing δG, since G′ is connected and wx is a bridge by59

Lemma 1. Otherwise let w be the only such vertex and let x be a vertex on the right side60

that immediately precedes or succeeds x; see Figure 1b. We obtain δ′G by moving all vertices61



S. Bhore, G. Li, M. Nöllenburg, I. Rutter and H. Wu 210:3

of C \ {u, v} between x and w, reversing their clockwise ordering. Observe that the choice of62

w and x guarantees that δ′G is almost outerplanar and all crossings lie on uv. J63

I Lemma 3. The connecting component containing u or v is adjacent to at most one64

connecting component. Every other connecting component is adjacent to exactly two connecting65

components. Moreover, if C and C ′ are two adjacent connecting components, then there is a66

vertex w that is shared by all edges in E(C,C ′).67

I Theorem 4. Let C be a left (right) connecting component. It is always possible to obtain68

a new almost outerplanar drawing δ′G of G from δG by moving only the vertices of C \ {u, v}69

to the right (left) side.70

3 The Lower Bound is Tight71

Let n ≥ 4 be an even number and let G be the cycle on vertices v1, . . . , vn, v1 (in this order)72

and let δG be a drawing with the clockwise order v2, . . . , v2i . . . , vn, vn−1, . . . , v2i+1, . . . , v1;73

see Figure 2. Clearly, the clockwise circular ordering of its vertices in a crossing-free74

circle drawing is either v1, v2, . . . , vn or its reversal. Assume that we turn it to the clock-75

wise ordering v1, v2, . . . , vn; the other case is symmetric. In δG, the n
2 odd-index vertices76

v1, . . . , v2i+1 . . . , vn−1 and vn are ordered counterclockwise. To reach a clockwise ordering, at77

most two of these vertices can be fixed. Thus, at most n/2 + 1 vertices in total can be fixed.78
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Figure 2 The drawing δG of the graph G defined in Section 3. It shows that fix◦(δG) ≤ n+2
2 .79

Open problems for future work. (i) The complexity of computing the outerplanar fixing80

number. (ii) Generalization of our result to non-outerplanar drawings of outerplanar graphs.81
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A Omitted Proofs and Details153

I Observation 5. If P is an xy-path in a left (right) component C, then it contains all154

vertices of C that are adjacent to a vertex of a right (left) component and lie between x and155

y on the left (right) side.156

I Lemma 6. If u and v are 2-connected in G′, then δG is planar.157

Proof. If vertices u, v ∈ V are 2-connected in G′, then G′ contains a cycle C that includes158

both u and v. In δG′ , this cycle is drawn as a closed curve. Any edge that intersects the159

interior region of this closed curve therefore has both endpoints on C. If there exists an edge160

e′ = xy that intersects e = uv, then contracting the four subpaths of C connecting each of161

{x, y} to each of {u, v} yields a K4-minor in G, which shows that G is not outerplanar. J162

I Lemma 1. Every non-connecting component C is adjacent to exactly one component C ′163

of G′ −X. Moreover, C ′ is connecting, there are at most two vertices in C ′ that are incident164

to edges in E(C,C ′), and if there are two such vertices w, x ∈ C ′, then they are adjacent and165

removing wx disconnects C ′.166

Proof. W.l.o.g., we assume that C is a left component. Since C is non-connecting, any167

component adjacent to it must be connecting. Moreover, if there are two distinct such168

components, they lie on the right side of the edge uv. Then either there is a path on the169

right side that connects them (but then they are not distinct), or removing C disconnects170

these components, and therefore uv, contradicting the assumption that C is a non-connecting171

component. Therefore C is adjacent to exactly one other component C ′, which must be a172

right connecting component. Let w and x be the first and the last vertex in C ′ that are173

incident to vertices in C when sweeping the vertices of G clockwise in δG starting at v; see174

Figure 3a. The lemma holds trivially if w = x. Suppose w 6= x. In the following we show175

that wx ∈ E and that wx is a bridge of C.176

Let P be an arbitrary path from w to x in C. If P contains an internal vertex y, then177

the path P together with a path from w to x whose internal vertices lie in C forms a cycle178

where x and w are not consecutive. Note that at least one of u, v, say u, is not identical to179

w, x, otherwise, u, v are biconnected. This, together with disjoint paths from w to v and x180

to u and the edge uv yields a K2,3-minor in G. Such paths exist, by the outerplanarity of181

δG′ and the fact that C ′ is connecting, but C is not.182

Since G is outerplanar, and therefore cannot contain a K2,3-minor, this immediately183

implies that P consists of the single edge wx, which must be a bridge. Observation 5 implies184

that w and x are the only vertices of C that are adjacent to vertices in C ′. J185

I Lemma 3. The connecting component containing u or v is adjacent to at most one187

connecting component. Every other connecting component is adjacent to exactly two connecting188

components. Moreover, if C and C ′ are two adjacent connecting components, then there is a189

vertex w that is shared by all edges in E(C,C ′).190

Proof. The claims concerning the adjacencies of the connecting components follows from191

the fact that every uv-path visits all connecting components in the same order. It remains192

to prove that all edges between two connecting components share a single vertex.193

Let C and C ′ be adjacent connecting components. If u and v are in one component, then194

this component is the only connecting component, and the claim holds vacuously. Now we195

assume that C or C ′ may contain u or v but not both. Furthermore, we may assume w.l.o.g.,196

that C is a left and C ′ is a right component.197
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Figure 3 The K2,3-minors we use in the proofs of lemmas in Section 2.186

Assume for the sake of contradiction that there exist two edges e1, e2 ∈ E(C,C ′) that do198

not share an endpoint. Let e1 = ab and e2 = cd where a, c ∈ C and b, d ∈ C ′ such that their199

clockwise order is a, b, d, c; see Figure 3b. Note that one of u, v is not in the set {a, b, c, d}.200

Otherwise, u and v are biconnected, which contradicts our case assumption. In the following,201

we may assume w.l.o.g., that a, b, c, d, v are five distinct vertices.202

Let P be a path from u to v in G′. Since C and C ′ are both connecting, P contains203

vertices from both components. When traversing P from u to v, let s and t denote the first204

and the last vertex of C ∪ C ′ that is encountered, respectively. We assume w.l.o.g. that205

s ∈ C and t ∈ C ′.206

Let PL be a path in C that connects s to a and let PR be a path in C ′ that connects207

d to t. By Observation 5, PL contains c and PR contains b. We then obtain a K2,3-minor208

of G by contracting each of PL[c, a], PR[d, b] into a single edge and by contracting the path209

vuP [u, s]PL[s, c] and the path PR[b, t]P [t, v] into a single edge, each. J210

I Theorem 4. Let C be a left (right) connecting component. It is always possible to obtain211

a new almost outerplanar drawing δ′G of G from δG by moving only the vertices of C \ {u, v}212

to the right (left) side.213

Proof. We assume w.l.o.g. that C is a left connecting component. Now, we determine two214

vertices w and w′ such that a right component is a non-connecting component adjacent to215

C iff it lies between w and w′ entirely. If u, v are not in C, by Lemma 3, C is adjacent to216

exactly two right connecting components C ′, C ′′(see Figure 4b). In the following, we assume217

that v, C ′, C ′′, u are in clockwise order. Let w be the last vertex in C ′ and w′ be the first218

vertex in C ′′ when traversing the vertices in δG clockwise from v; If C contains both u and219

v, let w be v and w′ be u; If C contains either u or v, by Lemma 3, C is adjacent to exactly220

one right connecting components C ′. Assume w.l.o.g. that v ∈ C. Let w be the last vertex221

in C ′ when traversing the vertices in δG clockwise and w′ be u. Observe that, due to the222

connectivity of G′ and the outerplanarity of δG′ , each right component that entirely lies223

between w and w′ is a non-connecting component adjacent to C.224

Again, we want to only move the component C to the right side between w and w′ without225

introducing any crossings. However, for simplicity of exposition, the following procedure has226

two phases. In the first phase, we move all the right non-connecting components connected227

to C to the left side “temporarily” as the procedure described in the proof of Lemma 2 such228

that these components are merged in C on the left side; see Figure 4c. In the second phase,229
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Figure 4 Case 2.2: u, v are connected but not 2-connected. (a) Moving a left non-connecting
component C to the right side of edge uv. (b) A left connecting component C that is adjacent to
vertices on the right side. (c) Moving all the right non-connecting components connected to C to
the left side “temporarily” in the 1.Phase. (d) Moving the component C (alongside the vertices that
are moved in the 1.Phase) to the right side, reversing their clockwise ordering.
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239

240

241

242

we move the component C \ {u, v} (alongside the vertices that are moved in the first phase)230

to the right side between w and w′, reversing their clockwise ordering; see Figure 4d. For231

each right component C ′ that is adjacent to C, by Lemma 3, there is exactly one vertex232

shared by edges E(C.C ′). Thus, there is no crossing on the right side of uv after the second233

phase. Furthermore, the vertices moved to the left at the first phase are in the same order as234

in δG after two reversals and they still lie between w and w′. Therefore, we could reach the235

same order after this two-phase procedure by only moving the vertices in C to the right side236

accordingly. J237
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