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Abstract. Consistently placing annotation labels across map scales of-
ten poses a problem due to the restriction of the screen space. This
problem becomes further exacerbated when we navigate by arbitrarily
zooming in and out of digital maps on mobile devices. In this paper, we
introduce leader lines to conventional techniques for scale-aware consis-
tent labeling to accommodate more annotation labels on the map domain
while retaining their plausible arrangement. The overall visibility of an-
notation labels is optimized using genetic algorithms while avoiding their
unwanted popping effects and sudden leaps regardless of the change in
the map scale. The feasibility of the proposed approach is demonstrated
by experimental results including comparison with relevant techniques.

Keywords: Active range optimization, dynamic labeling, leader lines, genetic
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1 Introduction

The development of mobile devices and digital map services allows us to read
maps not only on papers but also on display devices of various sizes. This tech-
nology advancement enables us to zoom in and out of the map content for an
overview and details of areas of interest and is especially important to dynami-
cally explore map content across multiple scales within limited screen space. In
addition, annotation labels help precisely locate specific geographic positions on
maps and clearly discriminate them from the names of other places. Thus, laying
out such labels consistently across the map scales will provide better readability
of the map content on digital devices. However, consistency in label placement
leads to technically challenging problems. Figure 1 shows specific types of such
unwanted behaviors in which we can see popping effects and sudden leaps by
the annotation labels as the scale changes. Avoiding visual distractions in label
placement across multiple scales usually requires high computational costs be-
cause we have to investigate all possible combinations of labels and their spatial
placement.
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Fig. 1. Naive inconsistent placement of labels as the scale changes from (a) to (b).
All the name labels that appear in (a) are expected to stay in (b) while some labels
disappear (e.g., “Shimane” and “Yamaguchi”) and other labels (e.g., “Kumamoto” and
“Miyazaki” ) unexpectedly jump between different positions at the different map scales.
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Fig. 2. Label placements (a) without leader lines (#{labels} = 22) and (b) optionally
with leader lines (#{labels} = 26). We can place more labels by selectively employing
leader lines to take advantage of available space within the map domain.

One promising solution to this problem is to retain consistency in the label
positions on a map irrespective of the change in the map scale. This consistent
map labeling problem was formulated as active range optimization (ARO) (Been
et al., 2006, 2010). The active range refers to the range of the map scale in which
the corresponding label sticks to the unique position on the map domain. Thus,
the consistent labeling problem can be solved by maximizing the total sum of
active ranges in such a way that as many annotation labels as possible remain and
as long as possible within the space spanned by the map domain and scale. To
achieve this, we extend the conventional ARO approaches by introducing leader



lines that connect between the point features and the annotation labels. This
permits us to spare a little space between a point feature and its corresponding
label, which eventually relaxes the degree of freedom in the label placement
and thus is more likely to accommodate more labels within the map domain.
For maximizing the total active range, we employ a genetic-based approach to
seek better placement of the annotation labels across the multiple map scales.
Specifically, we optimize the order of the labels to be placed and find the best
order, where we try to place the labels in a greedy fashion according to the
corresponding order. This allows us to finalize the best order of the labels that
maximizes the visibility of consistent label placement across the entire range of
the map scale.

Our technical contribution lies in the sophistication of previous techniques
for consistently placing labels across multiple scales, by introducing leader lines
that connect point features and labels to take advantage of the space around the
point features. This labeling design is particularly useful for visualizing areas
that have heterogeneous distributions of point features in such a way that they
form a set of local clusters. This is because we can place annotation labels
even when they are a little away from the corresponding point features with
the help of leader lines and thus can increase the total number of labels to be
placed in the map. Figure 2 gives an example of such consistent placement of
labels together with leader lines. After providing several experimental results, we
compare the conventional label placement without leader lines and the proposed
label placement with leader lines to demonstrate the feasibility of our labeling
approach.

The remainder of this paper is structured as follows. In Section 2, we briefly
summarize most relevant literature to this study. In Section 3, we present an
overview of our visualization framework, including the design of the leader draw-
ing styles for consistent dynamic label placement. In Section 4, we then detail
an algorithm for the extended ARO, which is effectively solved by the genetic-
based heuristic and greedy label placement scheme. In Section 5, we provide
several results generated by our system to demonstrate the feasibility of our ap-
proach. Finally, in Section 6, we conclude the paper and propose potential future
extensions.

2 Related Work

In this section, we review the most relevant techniques for the label placement
problem.

2.1 Static map labeling

Cartographers have investigated the conception of text discrimination, which is
evaluated for noticing the difference between features in cartography and has
been shown to be a key factor for map design (MacEachren, 1995; Chiang et
al., 2014). To improve text discrimination, labeling principles have been studied



and summarized in several pioneering works (Yoeli, 1972; Imhof, 1975). Wolff
(2009) conducted an extensive survey of techniques for automatic map label-
ing and thus provided instructions for computer science in cartography. For
example, gradient-descent optimization (Hirsch, 1982) and the integer program-
ming model (Zoraster, 1986) are classical static map labeling techniques, which
follow an empirical investigation to demonstrate the feasibility of each algo-
rithm (Christensen et al., 1995). Afterward, a genetic algorithm was introduced
to accelerate the computation time (Raidl, 1998). Other map features, such as
lines and areas, have also been considered to improve the readability of labels
on maps (Edmondson et al., 1997; Luboschik et al., 2008), and domain-assisted
label placement called boundary labeling (Bekos et al., 2007, 2015) was devel-
oped for this purpose. Appropriately drawing different leader line styles for label
placement enhances map readability effectively (Lin, 2010; Meng et al., 2015).

2.2 Dynamic map labeling

In practice, mobile devices are used for viewing maps, and thus, effective nav-
igation, such as annotating labels within a lens, has become a popular solu-
tion (Fekete & Plaisant, 1999). Fink et al. (2012) enhanced this layout by op-
timizing multiple design rules, such as minimizing the total leader length and
distance between labels, and thus provided beautiful label placement in static
and dynamic environments. A two-step labeling approach was introduced by
Petzold et al. (2003), where the system computes conflicted labels in a prepro-
cessing process and then applies the results to the user navigation. Gemsa et al.
(2013) also conducted trajectory-oriented map labeling, where consistent label
placement is computed that refers to moving history. These techniques were de-
veloped in a fixed scale and less consider the visual consistency of label placement
during user interaction.

Schwartges et al. (2014) presented a slider model to move labels along the
associated site points during scale changes, while a waiting function is employed
to avoid flickering effects. As pioneering work on consistent label placement, Poon
& Shin (2005) conducted another study on consistent label placement; however,
in this approach, the orientation of a label is fixed. A significant extension of this
approach was then proposed by Been et al. (2006, 2010), in which they relaxed
the restrictions on the algorithm to place labels of various sizes. The method
optimizes the active ranges of all labels by plotting rectangular pyramids in the
three-dimensional (3D) space to compute the conflicts of labels at individual
scales. Recently, this work was extended by Zhang et al. (2015), in which the
active ranges are designed to be selectable, and the total weight of the associated
ranges is maximized.

In this study, we relax the limitation of the approach proposed by Been et al.
(2006, 2010), so that labels with leader lines can be employed to improve map
readability. A genetic-based approach is introduced to solve the ARO problem
(Raidl, 1998; Wu et al., 2011), which provides an effective means for the map la-
beling problem, especially for optimizing fitness functions without being trapped
by local extrema.
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Fig. 3. Possible label positions to a given site point. (a) The conventional four-position
model (in orange) usually suffers from the lack of available space around the point
feature. (b) Our new 16-position model (bottom) consists of not only the conventional
four positions (top) but also 12 additional positions. For each, we use the leader lines
to connect the label and the point feature.

3 Design Principles for Label Placement

In this section, we provide an overview of the proposed approach with an ex-
planation of the design principles for label placement. The primary technical
challenge here is to develop scale-adaptive label placement while introducing
leader lines in the ARO model. The key idea is to appropriately select a subset
of visible labels at each scale to make full use of the available space around the
corresponding point features. Leader lines effectively make it possible to increase
such available space by connecting the labels and point features even when they
are a little away from each other.

In our approach, several design rules for placing annotation labels are in-
troduced for this purpose. First, for each point feature, we allow an additional
number of possible label positions that are a bit apart from the point feature
as shown in Figure 3(b). The conventional label placement does not have leader
lines as shown in Figure 3(a), which are all in touch with the point feature and
commonly employed in geographical information systems (GISs). However, in
this case, we often cannot find available labeling space especially in densely an-
notated regions where the point features are locally concentrated as a cluster
because the four possible positions are more likely to be occupied by other la-
bels in the vicinity beforehand. In our approach, in addition to the conventional
four positions (Figure 3(b) top), we introduce 12 surrounding label positions
(Figure 3(b) bottom) and connect the label and the feature point with a leader
line if it can be placed in one of these 12 positions, where the leader line is
assumed to be straight. Thus, leader lines will help us take advantage of more
available space around the respective point features and still maintain the visual
correspondence between the labels and the point features.

Please also note that each possible label position is indexed by the ID rang-
ing from 1 to 16 as shown in Figure 3(b), where we employ horizontal leader
lines for the positions indexed by 5, 8, 9, and 12, vertical leader lines for the



positions indexed by 6, 7, 10, and 11, and diagonal leader lines for the positions
indexed by 13, 14, 15, and 16. Employing horizontal and vertical leader lines
for the eight new label positions out of 12 effectively helps avoid unnecessary
conflicts with existing annotation labels when composing scale-aware consistent
label placement. Furthermore, these IDs indicate the order of preference for the
16 label positions at each point feature, which means that the smaller ID corre-
sponds to a better label position. Based on this design principle, our algorithm
will search for the position of each label in this preference order to arrange the
label as close as possible while maximally keeping it to the top right of the point
feature. Of course, this search process is conducted under the assumption that
all the labels are placed without mutual overlap within the map domain at the
respective scales.

Nonetheless, avoiding overlapping among the labels at multiple map scales
inevitably results in inconsistent placement of labels as shown in Figure 1. To
solve this problem, we avoid such overlapping across the scale by considering the
3D space spanned by the 2D map domain and scale, by following the conventional
ARO formulation (Been et al., 2006, 2010). In cartography, the map scale s
often refers to the degree of magnification of the specific map region, which also
indicates that the larger cartographic scale provides more detailed contents of
the map. However, in this paper, we employ the zooming scale r (Been et al.,
2006), which is defined as the inverse of the cartographic scale s (i.e., r = 1/s),
as the map scale for later convenience. This implies that the labels tend to easily
collide with each other once the zooming scale becomes larger as illustrated in
Figure 4(a), and thus, the leader lines provide a powerful means of alleviating
such conflicts among the labels. To the best of our knowledge, our work is the first
to introduce leader lines in the context of scale-aware consistent labeling based
on ARO. The idea permits us to utilize available space around the individual
point features and encourages us to improve the associated map readability by
maximizing the number of labels placed on the map.

4 Consistent Label Placement with Leader Lines

In this section, we describe how we extended Been et al.’s conventional ARO
approach for implementing consistent placement of map labels with their leader
lines across the scale. We explain our approach in three subsections: genetic-
based optimization of active ranges, occlusion-free placement of labels and leader
lines, and fitness evaluation of their spatial layout.

4.1 Genetic-based optimization of active ranges

As described previously, we employ the ARO technique (Been et al., 2006, 2010)
to maintain the consistency in the label placement across multiple scales. For this
purpose, we introduce genetic algorithms to optimize the placement of pyramidal
active range volumes in the 3D space while avoiding unwanted overlap among
labels at individual scales. In our formulation, we first encode a specific sequence
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Fig. 4. Active ranges in the 3D space spanned by the map domain (x,y) and the
zooming scale r. (a) The cross section of the pyramidal active range volume. (b) The
top face of the active range consists of the set of possible label positions, and its center
corresponds to the feature point. (c) Greedy placement of active ranges by referring
to a specific chromosome. (d) Possible conflicts among labels and leader lines in the
active range optimization.

of label IDs as a chromosome, then try to greedily place the active range volumes
in this order (see Section 4.2), and finally evaluate the fitness of the chromosome
by referring to the resultant label placement (see Section 4.3).

In this optimization, we initialize a set of chromosomes by randomizing the
individual sequences of label IDs and prepare it as the population of the first
generation. During the optimization phase, we try to update the population with
the next generation by evolving the individual chromosomes. This is usually
conducted by applying the crossover and mutation operations and replacing
the existing chromosomes with superior ones to finally compose a set of elite
chromosomes.

4.2 Occlusion-free placement of labels and leader lines

Now we are ready to consider how we can find the actual placement of pyramidal
active ranges in the 3D space by referring to chromosomes, each of which encodes
an individual order of label IDs. Note that the top face of each pyramidal active



range in the 3D space contains the 16 label positions while the center of the
face corresponds to the point feature, as shown in Figure 4(b). Suppose that we
currently have a specific order of label IDs as a chromosome and have already
finished placing the i-th label a;, as shown in Figure 4(c). In this case, we first
investigate how the pyramidal active range of the next j-th label a; overlaps
with the set of existing active ranges, by properly sampling the map scale. The
light blue region indicates the available space for the label to be placed next.
Among possible positions of the label, we select the one that has the largest
active range in the map scale, which implies that we employ the active range in
blue from the available 3D space. Furthermore, we also have to record the 3D
space that is already occupied because this is no longer available for the labels
to be placed later.

We also have to avoid unexpected overlap between the labels and leader
lines when we select one of the newly introduced 12 label positions as shown in
Figure 4(d). For this purpose, we approximate the shape of each leader line as a
bounding box that encloses the line. For example, we employ a thin rectangle as
the bounding box if the leader line is exactly horizontal or vertical. If the leader
line is slanted, we insert a normal rectangle as the leader line’s bounding box in
such a way that the diagonal of the rectangle coincides with the leader line. This
inevitably increases the number of bounding boxes we have to maintain at each
sampled map scale while effectively facilitates implementation of consistent label
placement with leader lines by taking advantage of existing data structures.

4.3 Fitness evaluation of the label placement

The final task is to formulate the fitness function for each chromosome, so that
we can systematically improve the set of chromosomes during the genetic-based
evolution. In our approach, we employ the following function

{Weight} x (M — {Label position ID}) x {Active range}, (1)

to evaluate the fitness of an individual label. Here, {Weight} is the weight as-
signed to the label, {Label position ID} is the ID among the 16 label positions,
and {Active range} is the size of the corresponding active range on the map
scale. Moreover, we set M = 20 in Eq. (1) so that we can assign larger fitness
values for the smaller label position IDs. We sum up the fitness values for all the
labels to evaluate the overall label placement of each chromosome. During the
chromosome evolution in the optimization, we maximize this fitness function to
find a satisfactory solution for the scale-aware label placement.

5 Results

We employed a dataset that has 3,887 point features over Japan as a demon-
stration example. Figure 5 shows several screenshots of label placements around
Tokyo in Japan. The results were generated using our genetic-based optimization
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Fig. 5. Label placement around Tokyo, Japan. Left: Naive inconsistent placement.
Right: Scale-aware consistent placement. Different colors are assigned to the names
according to their administrative levels; the prefecture, city, county, and town names
are in red, orange, green, and gray, respectively.
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Fig. 6. Label placement around Osaka, Japan. Left: Consistent placement with four
label positions. Right: Consistent placement with 16 label positions. Different colors
are assigned to the names according to their administrative levels; the prefecture, city,
county, and town names are in red, orange, green, and gray, respectively.
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Fig. 7. Comparison between the label placement with the conventional four label posi-
tions and the new 16 label positions. The chart summarizes the number of labels that
can be embedded in the entire map of Japan (the vertical axis) for the respective scales
(i-e., distances of the sides of the map domain (km; the horizontal axis)).

approach, where from top to bottom we zoomed in on the map by monotonously
reducing the zooming scale. Note that the images on the left were generated us-
ing a naive approach, which optimized the label placement individually at the
respective scales and thus could increase the number of visual labels at the cost
of inconsistency in the layout of labels and leader lines across multiple scales.
However, the image on the right reveal scale-aware consistent placement of la-
bels synthesized using our approach, which successfully avoids the unexpected
pop-up effects of labels and leader lines and retains their positions and drawing
styles. For example, the text label “Chosei” (in green on the bottom right of
the map), a county name, changes its position in the naive inconsistent label
placement (on the left of Figure 5), while it naturally appears as the zooming
scale decreases in the consistent label placement (on the right of Figure 5). The
consistent placement is much more reasonable because labels with low prior-
ity naturally disappear as we zoom out on the map. Note that here we draw
the leader lines together with the corner of the corresponding label boxes by
following the styles in Meng et al. (2015).

Figure 6 presents the optimal label placement around Osaka in Japan, where
the left and right columns show the label placement using the conventional four
label positions and the proposed 16 label positions, respectively. Here, both
placements avoid unwanted popping effects and sudden leaps of the labels and
successfully maintain consistency across successive scales. Nonetheless, the re-
sults in the right column clearly demonstrate that our approach maximally uti-
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lizes the space outside the boundary of Japan for accommodating more labels
to be placed especially in densely annotated regions. Furthermore, our new ap-
proach allows us to avoid distracting conflicts between the labels and the leader
lines while keeping the overall layout as tight as possible.

Figure 7 shows the comparison between the results using the conventional
four label positions and the proposed 16 label positions, where we summarize
the numbers of labels that can be embedded in the entire map of Japan at the
respective scales. Note that the horizontal axis of this chart represents the ap-
proximate distance of each side of the map square domain, which is proportional
to the power of the corresponding scale. The comparison shows that we can
increase the number of labels placed on the map especially when the zooming
scale is large, to optimize the use of available map space when we zoom out on
the map.

6 Conclusion and Future Work

In this paper, we presented an approach for consistently placing labels across
multiple scales by introducing leader lines for the conventional active range opti-
mization problem. The approach allows us to incorporate more annotation labels
into the map domain without unwanted artifacts, such as overlapping among la-
bels and distracting popping effects across multiple scales. The visibility of the
annotation labels is maximized using genetic algorithms by optimizing the order
of the labels in which they are embedded in the map domain in a greedy fashion.

Our future directions include accelerating our genetic-based computation by
grouping labels into several clusters of reasonable size, as well as combining them
together to form the entire label placement. Other potential extensions include
investigating additional aesthetic constraints for the label placement in terms of
country borders, administrative districts, ponds and rivers, as well as the layout
of transportation systems.
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