
Boundary Labeling in Text Annotation

Chun-Cheng Lin1,∗ Hsiang-Yun Wu2,† Hsu-Chun Yen2,3,‡

1 Dept. of Computer Science and Information Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan 807, ROC
2 Dept. of Electrical Engineering, National Taiwan University, Taipei, Taiwan 106, ROC

3 Dept. of Computer Science, Kainan University, Taoyuan, Taiwan 338, ROC

ABSTRACT

The text annotation system of a word processor software provides
the user the function of memorandums in editing a document. In
the visualization interface of the annotation system, each marked
word is connected to a text comment label on the right side of the
document by a polygonal line. Such a visualization interface can be
viewed as a one-side boundary labeling, in which each point site is
uniquely connected to a label placed on the right side of an enclos-
ing rectangle by a leader, which may be a rectilinear or straight line
segment. In the literature, there have existed some applications and
some theoretical results for the boundary labeling. In this paper, we
investigate the boundary labeling from the application on the an-
notation system. For this kind of labeling, if the number of labels
on the right side is large, the leaders may be drawn too densely to
be recognized easily. Therefore, in this paper, we propose a poly-
nomial time algorithm for the so-called 1.5-side boundary labeling
for the annotation system, in which, in addition to being connected
to the right side directly, leaders can be routed to the left side tem-
porarily and then finally to the right side. In addition, we investigate
a problem for two-side boundary labeling (for the annotation sys-
tem) that was not discussed previously. We show the problem to
be NP-complete, and then proposed a heuristic based on the ge-
netic algorithm to solve it. The experimental results reveal that our
approach performs well.

1 INTRODUCTION

In information visualization, cartography, geographic information
systems (GIS), and graph drawing, map labeling is an important
task which is concerned with efficiently placing extra information,
in the form of text labels, next to features (such as point features,
line features, or area features) in a drawing (map). In order to en-
sure readability, unambiguity and legibility, it is suggested that the
labels be pairwise disjoint and close to the features to which they
belong [9]. A detailed bibliography and survey on map labeling
can be found in [15], [12], respectively. ACM Computational Ge-
ometry Impact Task Force [6] has identified label placement as an
important area of research. The majority of map labeling problems
are known to be NP-complete [7, 10] in general. (The interested
reader is also referred to [13, 14] for various approximations and
heuristics for map labeling.)

Most of the research on map labeling has primarily focused on
labeling point features, and the basic requirement in this case is
that all the labels should be pairwise disjoint. It is clear that such a
requirement is difficult to be achieved in the case where large labels
are placed on dense points. In practice, large labels are usually used
in technical drawings or medical atlases where certain site-features

∗Corresponding author. E-mail: cclin321@gmail.com
†E-mail: snidget@cobra.ee.ntu.edu.tw
‡Research Supported in part by NSC Grant 97-2221-E-002-094-MY3,

Taiwan. E-mail: yen@cc.ee.ntu.edu.tw

are explained with blocks of texts. To address this problem, Bekos
et al. proposed the so-called boundary labeling [1, 3, 4], in which
all labels are attached to the boundary (four sides) of a rectangle
R enclosing all sites, and each site is connected to a unique label
by a leader, which may be a rectilinear or straight line segment.
In such a setting, they assumed that there are no two sites with the
same x- or y- coordinates, and investigated how to place the labels
and leaders in a drawing such that there are no crossings among
leaders and either the total leader length or the bends of leaders are
minimized under a variety of constraints. In a recent article, Bekos
et al. [2] investigated a similar problem for labeling polygonal sites
under the framework of boundary labeling. Furthermore, Lin et al.
[11] investigated the multi-site-to-one-label boundary labeling, in
which more than one site is allowed to be connected to a common
label and each site is connected only by a leader.

Conventionally, boundary labeling [1, 3, 4, 5] is identified as
k-side labeling with type-t leaders (where k ∈ {1,2,4} and t ∈
{opo, po,s,do}) if the labels are allowed to be attached to the k
sides of the enclosing rectangle R by only type-t leaders. The pa-
rameter t specifies the way a leader is drawn to connect a site to
a label. The opo, po, s, and do mean that the leader stand for
orthogonal-parallel-orthogonal, parallel-orthogonal, straight-line
and diagonal-orthogonal, respectively, which can easily be under-
stood from the examples given in Figures 1 (a), (b), (c) and (d). For
each type-opo leader, we further assume that the parallel (i.e., ‘p’)
segment lies immediately outside R in the so-called track routing
area, as shown in Figure 1 (a).

R

l2

(a) Type-opo (b) Type-po (c) Type-s

l4
l5

Track Routing Area

l1
l2

l3
l4
l5

l2
l1

l3
l4
l5R R

l3

(b) Type-do
R

l2
l1

l3
l4
l5

l1

Figure 1: Illustration of leaders.

A word processor is a software application for editing and print-
ing documents, e.g., MS Word, OpenOffice.org Writer, KWord, etc.
In general, the word processor provides a so-called text annotation
system, as shown in Figure 2, in which each marked word (which
can be viewed a rectangular site) in the document is connected to a
text comment (in the form of text labels) on the right side of the
document by a type-od leader (i.e., each leader from its site to
its label is composed of an orthogonal and then a diagonal seg-
ments), and the orthogonal segment of each leader is drawn as an
underline of the text line accommodating its corresponding marked
word. In such an application, a text line may contain more than
one marked word (i.e., y-coordinates of sites may be the same), so
that the orthogonal segments connected to those marked words are
overlapped. Therefore, the text annotation system can be viewed
as a one-line-to-many-label boundary labeling with type-od leaders
where y-coordinates of sites may be the same.

110110

Figure 2: The annotation system
on a word processor.

Figure 3: One-side boundary la-
beling with type-opo leaders.

Figure 4: 1.5-side boundary la-
beling with type-opo leaders.

Figure 5: Two-side boundary label-
ing with type-opo leaders.

The text annotation system has the following merits: for indi-
vidual use, the system can be viewed as memorandums, which,
for example, users can apply to recording current and previous
progress; for group use, the system can reduce the communica-
tion costs among the group members. Hence, the system is very
helpful in practice. However, the current visualization interface for
the text annotation system is not admirable and has the following
drawbacks:

• When the number of text comment labels is getting larger, or
there exist many large-size labels, the labels associated with
the same text line may be placed too far from the text line
(e.g., see labels #3, #4 and #5 which are associated with the
second text line from the bottom in Figure 2). In this case,
the diagonal segments of the leaders connected to those labels
would be too close to be recognized easily.

• When the number of marked words grows larger, the number
of text comment labels also grows larger. In this case, the
annotation of placing all the labels on the same side is not
admirable in visualization.

As a result, it is of importance and interest to develop better visual-
ization interface for the text annotation system.

In this paper, we develop two approaches to the visualization in-
terface for the text annotation system. One should notice that we
still apply one-site-to-one-label boundary labeling to the interface,
and the only difference between the previous work and our work is
that two sites with the same y-coordinates are allowed in our work.
In our setting, since too dense type-od leaders may not be recog-
nized easily (see Figure 2), we prefer to apply type-opo leaders (see
Figure 3). First, we propose the so-called 1.5-side boundary label-
ing with type-opo leaders, as shown in Figure 4, in which type-opo
leaders can be classified into two categories: direct leaders (as the
original ones) and indirect leaders (i.e., we make use of the left side
of document to route type-opo leaders so that the leaders are con-
nected to their labels indirectly, e.g., see the leader connected to
label #6 in Figure 4). Under this setting, we show that there exists a
polynomial time algorithm to place labels and leaders such that the
total leader length is minimized and there are no leader crossings.

Second, we propose the two-side boundary labeling with type-
opo leaders for the annotation system, as shown in Figure 5, in
which the labels placed on the two sides of the document are not
crowded so that we can observe them easily. Although the two-side
boundary labeling with type-opo leaders has been discussed in the
previous work [1, 3, 4], all of them assume that the number of labels
on each of the two sides of the document are given. In this paper,
we consider that the number of labels on the two sides are unknown
to investigate the problem of how to allocate the labels on the two
sides and route only direct leaders such that both the total leader
length and the difference between the sums of heights of labels on
the two sides are minimized, while there are no leader crossings.
When the total leader length is smaller, each label would be placed
more near its corresponding site, so that users can easily trace the

leader between labels and their corresponding sites. In addition, if
the difference of the sums of the heights of labels on the two side
is smaller, then we can observe the labels on the two sides in a
more balanced way, and not too many labels are placed on the same
side. Therefore, the concerned problem makes sense in practice.
We show this problem to be NP-complete, and hence propose an
approach based on the well-known genetic algorithm (GA) [8] to
solve it.

The GA is a heuristic to find the solution of the problem by glob-
ally searching the feasible solution space, in which each feasible
solution can be represented by a binary string or integers. In our
problems for two-side boundary labeling, if we determine which
side each label is placed on, then there exists only a feasible leader
routing such that there are no leader crossings. Hence, we only con-
sider how to determine which side each label is placed on. Each la-
bel is assigned a state which is zero (resp. one) if the label is placed
on the right (resp., left) side of the document. By doing this, each
feasible solution can be modeled as a binary string. Hence, GA is
suitable to solve our problems for the two-side labeling. Finally,
we develop a prototype for our approaches, and the experimental
results look promising.

2 PRELIMINARIES

In this section, we first introduce the boundary labeling model, and
then the genetic algorithm.

2.1 Boundary Labeling Model
Based on Bekos et al.’s work [2], we extend their boundary labeling
model to be expressed as an 8-tuple (Side, LabelSize, LabelPort,
LabelPos, Leader, IndirectLeader, Site, Ob jective), where:

Side: Labels can be placed on the East, West, South and North
sides of the enclosing rectangle R, which are denoted by N,
E, W and S, respectively.

LabelSize: There are two states for LabelSize: UnifSize (all labels
are of the same size), MaxSize (all labels are of uniform max-
imal size) or NonUnifSize (each label li is associated with a
height hi and a width wi).

LabelPort: FixedPorts (points where a leader can touch a label
are predefined) or SlidPorts (points can slide along the label’s
edge).

LabelPos: FixedPos (labels have either to be aligned with a prede-
fined fixed set of points on the boundary of the rectangle) or
SlidePos (labels can slide along the rectangle’s sides).

Leader: Types of leaders (opo, po, s or do).

IndirectLeader: IndirectAllowed (Indirect leaders are allowed) or
IndirectNotAllowed (Indirect leaders are not allowed).

Site: Type of the sites. Each site is a 1-point, line, rectangle, a
polygon, etc.

111111

Objective: LEGAL (just find a legal label placement), T LLM (find
a legal label placement, such that the total leader length is
minimum), T LLMDSHM (find a legal label placement, such
that both the total leader length and the difference of sums of
the heights of labels on each side is minimum), etc.

According to the above model, the theoretical contributions of
this paper are listed in Table 1.

Table 1: Time complexity of our concerned problems.

model time reference
(E, UnifSize, FixedPort/SlidPorts,
FixedPos, opo, IndirectAllowed, 1-point, TLLM) O(n5) Thm 1

(EW, UnifSize/NonUnifSize, FixedPort/SlidPorts,
FixedPos, opo, IndirectNonAllowed, 1-point,
TLLMDSHM) NPC Thm 2

2.2 Genetic Algorithm
The Genetic algorithm (GA) [8] is a stochastic global search
method that has proved to be successful for many kinds of opti-
mization problems. GA is categorized as a global search heuristic.
It works with a population of candidate solutions and tries to opti-
mize the answer by using three basic principles, including selection,
crossover (also called recombination), and mutation. For more de-
tails on GA, readers are referred to [8].

3 OUR THEORETICAL RESULTS

In this section, we first show that the 1.5-side boundary labeling
with the minimum total leader length can be found in polynomial
time, and then we show that the problem of finding the two-side
boundary labeling so that both the total leader length and the dif-
ference between the sums of heights of labels on the two side are
minimized to be NP-complete.

3.1 One-and-Half-Side Boundary Labeling
In what follows, we use a dynamic programming algorithm to solve
the problem of how to find a 1.5-side boundary labeling with type-
opo leaders, as shown in Figure 4 (where indirect type-opo leaders
are allowed to be applied), so that the total leader length is mini-
mized, while there are no crossings among leaders.

Before presenting our result, some notations are given as fol-
lows. In the case of using fixed ports (resp., sliding ports), we de-
fine Right(p, i) to be the length of a direct type-opo leader from site
p to the predefined port (resp., the closest point) of the i-th label
on the East side. Similarly, in the case of using fixed ports (resp.,
sliding ports), we define Le f t(p, i) to be the length of an indirect
type-opo leader from site p to the predefined port (resp., the closest
point) of the i-th label on the East side.

The idea of our dynamic programming algorithm is given as fol-
lows. As far as the routing of an indirect type-opo leader is con-
cerned, we observe that the indirect leader separates sites into three
groups and also labels into three groups, as shown in Figure 6 (see
the indirect leader connected to site pi), so that three subproblems
of how to route leaders from each group of sites to its correspond-
ing group of labels are formed. We calculate the total leader lengths
of the three subproblems, respectively, and compare them with the
total leader length while all sites are connected to labels by direct
leaders. The minimum of the four total leader lengths is selected as
the solution of the original problem.

Our result in this subsection is given in the following theorem.

Theorem 1 The labeling of the model (E, UnifSize, Fixed-
Port/SlidPorts, FixedPos, opo, IndirectAllowed, 1-point, TLLM)
can be found in O(n5) time.

pa

(a) Sa,b,c when i < j.

pi-1
pi+1

pj
pj+1

pb

•••

•••

•••

pi

c-th

(c–a+i)-th

(c–a+j+1)-th

(c–a+b)-th

(c–a+j–1)-th

(c–a+i–1)-th

•••

•••

•••

document label

Sa,i-1,c

Si+1,j,c-a+i

Sj+1,b,c-a+j+1

(c–a+j)-th

pa

pj-1
pj
pi-1
pi+1

pb

•••

•••

•••

pi

c-th

(c–a+i)-th

(c–a+j +1)-th

(c–a+b)-th

(c–a+i+1)-th

(c–a +j–1)-th

•••

•••

•••

document label

Sa,j-1,c

Si+1,b,c-a+i+1

(c–a+j)-th

(b) Sa,b,c when i > j.

Sj,i-1,c-a+j+1

Figure 6: Illustration of a subproblem.

Proof We apply a dynamic programming approach to our con-
cerned problem. Before addressing the approach, we give some no-
tations as follows. There are n sites p1, p2, · · · , pn in the map, with
y(p1) ≥ y(p2) ≥ ·· · ≥ y(pn). Since each label is of uniform size in
the concerned problem, to determine the index of a label on the East
side is enough to determine the position of the label. Therefore, we
let Sa,b,c denote the minimal total leader length of the subproblem
for the 1.5-side boundary labeling where sites pa, pa+1, · · · , pb are
connected to the c-th to the c +(b− a)-th labels on the East side.
That is, the solution of our concerned problem is equal to S1,n,1.

See also Figure 6. Our dynamic programming formula is given
as follows:

Sa,b,c = min{
b−a

∑
i=0

Right(pa+i,c+ i),

min
i, j∈{a,···,b},i< j

{Le f t(pi, j)+Sa,i−1,c

+Si+1, j,c−a+i +S j+1,b,c−a+ j+1},
min

i, j∈{a,···,b},i> j
{Le f t(pi, j)+Sa, j−1,c

+S j,i−1,c−a+ j+1 +Si+1,b,c−a+i+1}}
where inside the first min function of the above formula, the first
term is the total leader length when all the leaders are connected di-
rectly to the East side; the second (resp., third) term is the minimum
among all the possible 1.5-side boundary labeling when site pi is in-
directly connected to the j-th label on the East side for i < j (resp.,
j > i), which can be realized by Figure 6(a) (resp., Figure 6(b)).

We construct n tables T1, · · · ,Tn where table Ti has (n − i +
1)× (n − i + 1) entries for i ∈ {1, · · · ,n}; the entry (j,k) in ta-
ble Ti is assigned the minimal total leader length when sites
p j, p j+1, · · · , p j+i−1 are connected to the k-th, the (k + 1)-th, · · ·,
and the (k + i−1)-th labels on the East side by direct and indirect
type-opo leaders. That is, the solution of our concerned problem
is recorded in the entry (1,1) in table Tn. Therefore, after calcu-
lating all the entry values in each table, the solution of our con-
cerned problem can be obtained. Note that the space complexity is
∑n

i=1(n− i+1)2 = O(n3).
For i = 1, · · · ,n, we can compute each entry in table Ti in O(i2)

time. The reason is given as follows. W.l.o.g., we compute en-
try (j,k) in table Ti. According to our dynamic programming for-
mula, entry (j,k) is equal to S j, j+i−1,k . Since we consider all pairs
between i sites and i labels in the computation of S j, j+i−1,k , thus
S j, j+i−1,k can obtained in O(i2) time. Note that when computing
each entry in those tables, if the labeling leads to a infeasible so-
lution (e.g., there are crossings among leaders), then the entry is
assigned an infinity value.

Since each entry can be computed in O(i2) time, and there (n−
i+1)2 entries in table Ti for i ∈ {1, · · · ,n}, the total time complexity
is O(∑n

i=1(n− i+1)2i2) = O(n5). �

112112

Note that it is of interest to find an improved solution for the
above problem. Furthermore, if we consider a relaxed version
where the label size is set as NonUnifSize, then we do not know
how to solve this problem. That is, the problem of finding a le-
gal labeling for the model (E, NonUnifSize, FixedPort/SlidPorts,
FixedPos, opo, IndirectAllowed, 1-point, TLLM) is open.

3.2 Two-Side Boundary Labeling

In what follows, we consider the problem of how to allocate labels
on the two sides and route only direct type-opo leaders for the two-
side boundary labeling so that both the total leader length and the
difference of the sums of the heights of labels on the two side are
minimized, while there are no crossings among leaders.

We can show the problem of finding a labeling for the
model (EW, UnifSize/NonUnifSize, FixedPort/SlidPorts, Fixed-
Pos, opo, IndirectNonAllowed, 1-point, TLLMDSHM) to be NP-
hard. W.l.o.g., in this paper, we only show the NP-completeness of
the following decision problem:

The TLLMDSHM PROBLEM: Given an integer M and an annota-
tion system A of a document in which there are n marked words
and n comment labels l1, · · · , ln (where each label li has height
hi for i ∈ {1, · · · ,n}), is there a two-side boundary labeling (with
NonUnifSize and SlidePorts) for A in which the set of labels placed
on the East (resp., West) side is denoted L1 (resp., L2) such that the
total leader length is the minimum and |∑li∈L1

hi −∑li∈L2
hi|< M?

The TLLMDSHM problem can be shown to be NP-complete as
follows, whose proof is omitted due to page limitation.

Theorem 2 The TLLMDSHM problem is NP-complete.

Because the TLLMDSHM problem is NP-complete, we apply
the genetic algorithm to designing a heuristic for the problem in the
next section.

4 GENETIC ALGORITHM FOR THE TWO-SIDE LABELING

The implementation of each steps in designing our genetic algo-
rithm for the two-side labeling are detailed in this section.

4.1 Individual

The individual represents a candidate solution. In our problem, it
represents a legal label placement without any leader crossings. An
individual is stored as a binary string s1s2 · · ·sn, where for each i ∈
{1, · · · ,n}, if label li is placed on the West side, si = 0; otherwise,
si = 1. Such a representation is enough to determine a legal label
placement because there is only one boundary labeling without any
leader crossings once we know which side each label is placed on
[3, 4].

4.2 Initialization

At the beginning of the genetic algorithm, the individuals in the
population have to be initialized. Initially many individual solu-
tions are randomly generated to form an initial population. The
population size depends on the nature of the problem, but typically
contains several hundreds or thousands of possible solutions. Con-
ventionally, the population is generated randomly, covering the en-
tire range of possible solutions (the search space). Occasionally,
the solutions may be “seeded” in the areas where the optimal so-
lutions are likely to be found. In our case, this is done randomly.
We generate a label placement with restricted given area (including
rectangle R, track routing area, and space for labels) and let bad
offspring eliminated by selection.

4.3 Evaluation

The choice of the evaluation function plays a crucial role in the
design of a genetic algorithm. There is a big advantage of using
evaluation in genetic algorithm. One can measure desired criteria
on the resulting placement and weight these criteria to suit personal
preferences. Because genetic algorithm is always used in multi-
purpose problem, we can then analyze how important these criteria
are. Our concerned criteria are stated as follows: all the leaders
do not cross to each other; all the labels do not overlap each other;
labels should be placed evenly on East and West sides so that the
difference of the sums of the heights of the labels on the two sides is
as minimal as possible; the total leader length should be as minimal
as possible.

4.4 Selection

Selection is important to genetic algorithm, since only selection
drives the search towards more promising regions of the search
space. In our implementation, we select individuals for reproduc-
tion according to the common linear ranking selection scheme, i.e.,
individuals are selected according to their rank, with better indi-
viduals receiving a higher chance of being selected. So that, the
selective procedure of the actual fitness values would be important,
since beforehand we do not known the range of fitness values where
the optimal solution is located. The algorithm is of the steady state
type, i.e., the offspring is introduced into the population, and the
worst-fitted individual is deleted. In this way, the best solution so
far is never deleted. In addition, if there exists at least a leader
crossing in the solution resulting from a certain individual, the indi-
vidual should not be counted in the population. Our fitness function
is defined as follow:

fi = λ1 ×
(

T LL
n× (|tR −bR|+ |rR − lR|+ ε)

)
+λ2 ×

(|Rh −Lh|
Rh +Lh

)

(1)
where TLL denotes the total leader length; Rh (resp., Lh) is the
sum of the heights of the labels on the East (resp., West) side; ε
is the width of the track routing area; tR, bR, bR, and lR are top,
bottom, right, and left positions of rectangle R, respectively. In
order to normalize the function, we divide these parameters to their
intuitive maximum value. Thus, w.l.o.g., λ1 and λ2 can be chosen
in the range between 0 and 1 under the constraint of λ1 +λ2 = 1.

4.5 Recombination

In order to obtain a better result, we combine two good parents
into a new offspring which may become better or not. The pur-
pose of the crossover operator is to recombine sub-placements of
different individuals to produce an offspring. Since, we expect that
good parts of a placement are connected, we perform crossover by
choosing randomly a connected parts of the placement of two par-
ents and swapping the sub-placements. However, there is a problem
with this operator when using this method. A combination of two
good parents may yield a poor offspring. This poor offspring will
be deleted during the natural selection process.

4.6 Mutation

Mutation is a crucial step of genetic algorithm. While using recom-
bination, we can only find new combination of individuals that are
already present. We may lose some information forever while it is
not in the population. Another method, called mutation, can intro-
duce new material into the population, i.e., the slight changing of
individuals. It is necessary and reasonable to get new materials to
increase the probability of obtaining better answers. In out imple-
mentation, mutation is done by randomly changing binary vector
with a given small probability. We try to change one leader from
the East side to West side (or from the West side to the East side).
By doing so, we have a probability to obtain a better individual

113113

through the present individual, and the result is different from the
recombination (or crossover) process.

5 EXPERIMENTAL RESULTS

We have developed a prototype for the GA algorithm for the two-
side labeling. Experimental results under different combinations of
λ1 and λ2 in Equation (1) are given in this section.

5.1 Total Leader Length Minimization

In some situations, we may focus on the objective of minimizing
the total leader length (TLL). We can slightly change λ1 and λ2 to
fit our destination. To this end, we set λ1 = 1.0 and λ2 = 0.0.

We consider an example with 20 sites and 20 labels. The exper-
imental results of the example using our genetic algorithm and the
brute-force method are given in Table 2. For comparative purpose,
we provide the following information: the maximal possible TLL
in this example is 12160 units, and the total label height is 14000
units. For the TLL, the TLL of our GA algorithm is 4872 units; the
TLL of the optimal solution is 4140 units. We can see that the dif-
ference between our GA solution and the optimal solution is only
732 units, which is a small number in relative to the maximal pos-
sible TLL – 12160 units. Therefore, our GA algorithm can obtain a
solution with TLL not too worse than the optimal TLL. As for the
difference of the sums of heights of labels on the two sides (DSHL),
our GA solution (36 units) is better than the solution (56 units) with
the optimal TLL. Although the TLL is smaller in this setting, bad
DSHL results in a unbalanced drawing of labels, as shown in Fig-
ure 7 and Figure 10.

Table 2: The experimental results of an example using our GA algo-
rithm under various λ1 and λ2 versus the optimal solution.

λ1 λ2 solution total difference
leader length of two-side heights

1.0 0.0 our GA (Figure 7) 4872 units 36 units
optimal (Figure 10) 4140 units 56 units

0.0 1.0 our GA (Figure 8) 5022 units 8 units
optimal (Figure 11) 5508 units 0 units

0.5 0.5 our GA (Figure 9) 4860 units 12 units
optimal (Figure 12) 4154 units 0 units

5.2 Label Height Balance on the Two Sides

In some situation, we may focus on objective of minimizing the
difference of the sums of heights of labels on the two sides (DSHL).
To this end, we set λ1 = 0.0 and λ2 = 1.0.

Consider the same example as the previous subsection, in which
the maximal possible TLL is 12160 units, and the total label height
is 14000 units. The experimental results of the example using our
genetic algorithm and the brute-force method are given in Figure 8
and Figure 11; their statistics is given in Table 2. We can see that
the difference of the DSHL values between our GA solution and the
optimal solution is only 8 units, which is a small number in relative
to the maximal possible DSHL – 14000 units. Although the DSHL
is smaller in this setting, bad TLL results in a drawing with crowded
leaders, as the leaders in Figure 11 are more crowed in track routing
areas than in Figure 8.

5.3 Total Leader Length Minimization and Label Height
Balance at the Same Time

In some situations, we may focus on the objective of minimizing
both the total leader length (TLL) and the difference of the sums
of heights of labels on the two sides (DSHL). To this end, we set
λ1 = 0.5 and λ2 = 0.5 (i.e., both measures are important evenly).

Consider the same example as the previous subsection, in which
the maximal possible TLL is 12160 units, and the total label height
is 14000 units. The experimental results of the example using our
genetic algorithm and the brute-force method are given in Figure 9
and Figure 12; their statistics is given in Table 2. For the TLL, the
TLL of our GA algorithm is 4860 units; the TLL of the optimal
solution is 4154 units. We can see that the difference between our
GA solution and the optimal solution is only 706 units, which is
a small number in relative to the maximal possible TLL – 12160
units. For the DSHL, we can see that the difference between our
GA solution and the optimal solution is only 12 units, which is
a small number in relative to the maximal possible DSHL – 14000
units. Therefore, it is concluded that our GA algorithm can generate
a solution which is not too worse than the optimal solution. We can
observe from Figure 9 and Figure 12 that minimizing both the TLL
and the DSHL results in a drawing with balanced heights of labels
on the two sides and clear leaders in track routing areas.

5.4 Discussion

We show that our GA works as follows. As shown in Figure 13, the
average fitness finally converges to the optimal fitness value, and it
converges very quickly (see also the third generation in Figure 13).
Although in other cases we may see some plots in Figure 13 which
are not respected, those plots are due to the mutation process, but
we still can find out the tendency of convergence in this cases.

0.205

0.215

0.225

Best Fitness 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

AVG Fitness 0.22 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

0 1 2 3 4 5 6 7 8 9 10

Figure 13: The GA convergence with λ1 = 0.5 and λ2 = 0.5.

In addition, we conduct some experiments with some other com-
binations of λ1 and λ2, as shown in Table 3. Because of different
combinations, optimal solutions are also different. Thus, when we
would like to compare the results, we have to compare them with
their own optimal solutions. According to Table 3, we can find that
there is a tendency that the TLL grows larger while focusing on the
DSHL, and vice versa. Even though the results of our GA algorithm
depend on the initial placement mostly, different combinations still
affect them. In fact, the best combination should be defined case by
case, so we do not study them more.

Table 3: Statistics of Experimental results

(λ1,λ2) TLL TLL opt DSHL DSHL opt
(1.0, 0.0) 4614.0 4140 40.0 56
(0.8, 0,2) 4667.6 4150 51.2 8
(0.6, 0,4) 4670.8 4154 41.6 0
(0.4, 0,6) 4785.0 4154 58.4 0
(0.2, 0,8) 4839.2 4154 31.2 0
(0.0, 1,0) 5020.8 5508 12.0 0

Our GA algorithm also can be applied to MS Word (see Fig-
ure 14). Two column spaces on the two sides of the document are
used for the label placements. It becomes clearer to distinguish all
leaders on the page. For readers, they do not need to turn the pages
to find the information about the sites. Readability is also improved.

114114

Figure 7: A labeling using our GA algorithm
with λ1 = 1.0; λ2 = 0.0.

Figure 8: A labeling using our GA algorithm
with λ1 = 0.0; λ2 = 1.0.

Figure 9: A labeling using our GA algorithm
with λ1 = 0.5; λ2 = 0.5

Figure 10: The optimal solution for the example
of Figure 7.

Figure 11: The optimal solution for the example
of Figure 8.

Figure 12: The optimal solution for the example
of Figure 9.

Figure 14: Application to MS Word.

5.5 Comparison between one-side and two side label-
ings

The relationship between these two approaches is how we would
like to improve the text annotation system. Most of the time, we
hate to read articles on computers because we get tired easily. Some
people may used to print them out. Hence, it is good to consider
how to fill one paper with most information. By doing so, we should
consider not only the column space for labels, but also how large
they are. These two approaches have their own pros and cons that
are subjective. Thus, we may provide related parameters for users.
Even though there exists a document which can be applied on one-
side and two boundary labelings, it is hard to find objective criteria
to judge how good they are.

REFERENCES

[1] M. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Boundary la-
belling of optimal total leader length. In Proc. of the 10th Panhellenic
Conference on Informatics (PCI 2005), volume 3746 of LNCS, pages
80–89, 2005.

[2] M. Bekos, M. Kaufmann, K. Potina, and A. Symvonis. Area-feature
boundary labeling. The Computer Journal, 2008. To appear.

[3] M. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff. Boundary la-
beling: models and efficient algorithms for rectangular maps. In Proc.
of the 12th International Symposium on Graph Drawing (GD 2004),
volume 3383 of LNCS, pages 49–59, 2004.

[4] M. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff. Boundary la-
beling: models and efficient algorithms for rectangular maps. Compu-
tational Geometry: Theory and Applications, 36(3):215–236, 2006.

[5] M. Benkert, H. Haverkort, M. Kroll, and M. Nöllenburg. Algorithms
for multi-criteria one-sided boundary labeling. In Proc. of the 15th In-
ternational Symposium on Graph Drawing (GD 2007), volume 4875
of LNCS, pages 243–254, 2008.

[6] B. Chazelle and 36 co-authors. The computational geometry impact
task force report. In B. Chazelle, J. E. Goodman, and R. Pollack,
editors, Advances in Discrete and Computational Geometry, volume
223, pages 407–463. AMS, 1999.

[7] M. Formann and F. Wagner. A packing problem with applications to
lettering of maps. In Proc. of the 7th Annual ACM Symposium on
Computational Geometry (SoCG 1991), pages 281–288. ACM Press,
1991.

[8] J. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975.

[9] E. Imhof. Positioning names on maps. The American Cartographer,
2(2):128–144, 1975.

[10] C. Iturriaga and A. Lubiw. NP-hardness of some map labeling prob-
lems. Technical Report CS-97-18, University of Waterloo, 1997.

[11] C.-C. Lin, K.-R. Kao, and H.-C. Yen. Many-to-one boundary labeling.
Journal of Graph Algorithms and Applications, 12(3):319–356, 2008.

[12] G. Neyer. Map labeling with application to graph drawing. In D. Wag-
ner and M. Kaufman, editors, Drawing graphs: Methods and models,
volume 2025 of LNCS, pages 247–273. 2001.

[13] F. Wagner. Approximate map labeling is in ω(n logn). Information
Processing Letter, 52(3):161–165, 1994.

[14] F. Wagner and A. Wolff. Map labeling heuristics: Provably good and
practically useful. In Proc. of the 11th Annual ACM Symposium on
Computational Geometry (SoCG 1995), pages 109–118. ACM Press,
1995.

[15] A. Wolff and T. Strijk. The map-labeling bibliography.
http://i11www.ira.uka.de/map-labeling/bibliography/, 1996.

115115

