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ABSTRACT

Datasets obtained through recently advanced measurement tech-
niques tend to possess a large number of dimensions. This leads
to explosively increasing computation costs for analyzing such
datasets, thus making formulation and verification of scientific hy-
potheses very difficult. Therefore, an efficient approach to iden-
tifying feature subspaces of target datasets, that is, the subspaces
of dimension variables or subsets of the data samples, is required
to describe the essence hidden in the original dataset. This pa-
per proposes a visual data mining framework for supporting semi-
automatic data analysis that builds upon asymmetric biclustering
to explore highly correlated feature subspaces. For this purpose, a
variant of parallel coordinate plots, many-to-many parallel coordi-
nate plots, is extended to visually assist appropriate selections of
feature subspaces as well as to avoid intrinsic visual clutter. In this
framework, biclustering is applied to dimension variables and data
samples of the dataset simultaneously and asymmetrically. A set
of variable axes are projected to a single composite axis while data
samples between two consecutive variable axes are bundled using
polygonal strips. This makes the visualization method scalable and
enables it to play a key role in the framework. The effectiveness
of the proposed framework has been empirically proven, and it is
remarkably useful for many-to-many parallel coordinate plots.

1 INTRODUCTION

Due to current advanced measurements, collected datasets tend to
be large and multivariate. To visualize such complex data, paral-
lel coordinate plots (PCP) has become a popular technique [5]. In
PCP, all dimension variables are represented as parallel line axes
and each data sample is represented as a polyline connecting the po-
sitions of the sample on the axes. Although PCP has been a promi-
nent approach for observing correlation between adjacent axes, in-
vestigating all combinations of axis order and comparing two sepa-
rate axes are still time-consuming tasks. One solution to this prob-
lem relies on an extension of PCP called many-to-many parallel
coordinate plots (many-to-many PCP) [6], which is extended by
placing the drawing of all pairs of axes so that users can compare
every pair of dimension variables at a glance. One drawback of
PCPs is that they cause visual clutter due to the increase in samples
and dimensions because the drawing area for each pair of axes be-
comes limited and thus unexpected distortion occurs when the axis
needs to be placed away from the diagram center.

Indeed, reducing visual complexity in analysis processes has
been recently tackled. One typical solution is subspace exploration
techniques [10, 12, 13, 15, 17], which present extracted feature sub-
spaces for users to accelerate the analysis process; however, these
incorporated with PCPs still suffer from the aforementioned axis
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ordering problem and cannot intuitively show axis correlation of all
pairs. For this purpose, in this paper, we employ the asymmetric bi-
clustering approach [15] to reduce the number of data samples and
dimension variables without editing their original properties and
then present the variable correlations using many-to-many PCPs.
Our main contribution can be summarized as follows:

e Provide a framework with multiple views to visually conduct
appropriate feature subspace extraction;

e restate the drawing algorithm of many-to-many PCP and ex-
tend the algorithm to any dimension; and

e perform several analyses and demonstrate the effectiveness of
using many-to-many PCP.

The paper is organized as follows: Section 2 provides a survey
and Section 3 summarizes our visualization framework. Section 4
details the employed asymmetric biclustering approach, followed
by an explanation of the visualization in Section 5. Results will be
presented in Section 6, and the paper will be concluded in Section 7.

2 RELATED WORK
2.1 Subspace Exploration

Multivariate data exploration has become popular due to the time-
consuming process of feature extraction. In visual analysis models
proposed by Turkay et al. [12, 13], multivariate statistical analysis is
employed to project a multivariate dataset onto screen space. Tatu
et al. [10] introduced a similarity measure between a pair of sub-
spaces for finding significant subspaces. Yuan et al. [17] presented
data sample distribution and dimension correlation for users to ac-
celerate interactive data exploration. Recently, Watanabe et al. [15]
proposed a semi-automatic approach, which simultaneously clus-
ters data samples and dimension variables to visualize highly cor-
related feature subspaces with enhanced PCPs.Nonetheless, align-
ing axes in parallel increases the visual difficulty of comparing two
nonadjacent individual axes. In this paper, we revisit the approach
of Watanabe et al. [15] for extracting highly correlated subsets and
subspaces of data while incorporating many-to-many PCPs to over-
come the weakness of classical PCPs.

2.2 Variants of Parallel Coordinate Plots

A pioneering work on PCP in visualization can be traced back to
Inselberg [5], which has been commonly used for visualizing mul-
tivariate datasets. PCP aligns dimension variables using parallel
axes and uses polylines to connect the value of a data sample along
each axis, and thus is effective to present correlations between adja-
cent axes. To overcome the weakness of PCP, many-to-many PCP
was proposed by Lind et al. [6]. It aligns all pairs of axes in a star
shape, so that the correlations of all pairs of dimension variables
appear exactly once in the diagram. Nonetheless, many-to-many
PCPs causes visual clutter due to the amount of information be-
ing visualized, thus making it difficult to directly apply to multi-
variate datasets. Several techniques have also been investigated to
reduce the visual complexity of classical PCP. Nohno et al. [§] em-
ployed Pearson’s correlation coefficient to contract dimensions into
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Figure 1: Overview of our visualization framework.
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Figure 2: (a) Schematic data matrix representation of the block model
for K =3 and L =2. (b) A concept of a spherical k-means algorithm.

a single composite axis to show trends inherent in multivariate data.
Besides, edge bundling was introduced to group highly correlated
data samples [7, 18]. Palmas et al. [9] introduced strip rendering
styles to enhance the readability of grouped data samples. In our
approach, we also bundle multiple data samples [9] to eliminate the
visual complexity inherited from the many-to-many PCP.

3 OVERVIEW OF THE VISUALIZATION FRAMEWORK

This section summarizes the visualization framework of the pro-
posed approach. The present approach consists of two main func-
tions, which include (1) biclustering highly correlated data samples
and dimension variables and (2) providing a coordinated view for
visual data analysis. Specifically, our approach begins with auto-
matically extracting highly correlated data samples and dimension
variables using the asymmetric biclustering technique [15], thus
providing multiple PCP views together with a newly introduced
many-to-many PCP view for data exploration to give full correla-
tion information after reducing the data. Figure 1 depicts the analy-
sis scenario using our prototype system. First, users can input their
initial guess on the number of clusters of data samples and dimen-
sion variables and then visually confirm the clustering results by
refining the initial choice of cluster number. In other words, if the
correlation between a pair of clusters is still high, users can try to re-
duce the dimension cluster number before deciding to remove them
from the target dataset. Alternatively, they can further investigate
what relationships these clustered dimensions implicitly have, since
many-to-many PCP shows all combinations of correlation between
each pair of dimension variables. With this scheme, users can thus
justify the removal of poorly-correlated dimension variables first or
merge separated clusters into one more effectively.

4 ASYMMETRIC BICLUSTERING ALGORITHM

As described previously, the reduced data presented on the screen
space is extracted by the approach of Watanabe et al. [15] and thus
the clustered content is expected to be highly correlated. In this sec-
tion, we briefly introduce how this biclustering approach works in
our visualization system; for more details, refer to [15]. Practically,
the asymmetric biclustering approach allows us to cluster data sam-
ples and dimension variables simultaneously and thus effectively
extract the highly correlated portion of the data. This asymmet-

ric biclustering approach is extended from block modeling tech-
niques [4], which decompose a data matrix into several subblocks
and find the optimal partition under a predefined objective function.

Figure 2 shows an example of the data structure in this approach,
which includes n samples in d-dimensional space that are divided
into K x L submatrices. The data matrix with its rows and columns
sorted is therefore approximated as:
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where Ej; is the k x [ matrix with all ones. Based on the decom-
posed blocks, the conventional biclustering approach defines the
following squared error as the objective function:
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where Vi, € R indicates the mean value of each block (k =
1,2,---,Kandl=1,2,---,L). Here, k(i) € {1,--- , K} (i=1,---,n)
is the data sample cluster assignment and A(j) € {1,---,L} (j =
1,---,d) is the dimension variable cluster assignment.

Once sample and dimension cluster labels have been initialized,
the algorithm is accomplished by iteratively updating Eq. (3) and
assigning Eq. (4) and Eq. (5), respectively.
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Nonetheless, this classical biclustering algorithm uses k-means
clustering for clustering both data samples and dimension variables
and the correlations between dimensions of each cluster could be
missed. To address this, Watanabe et al. introduced spherical k-
means-based clustering techniques for clustering of dimensions.
Generally, the spherical k-means can be considered as the k-means
algorithm on the unit hypersphere, as illustrated schematically in
Figure 2(b). In the spherical k-means algorithm, the mean vector
is normalized so that the center of each cluster (i.e., &; € R" and
[|€j]| = 1) has a minimal angle between components. For this rea-
son, the block mean value is redefined as
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and the objective function is then updated as
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where ;) is the /th mean vector of dimensions and s(j) €

—1,+1} are indicators showing that My ;) 1s positively or neg-
atively correlated with &; to accomplish asymmetric property be-
tween data samples and dimension variables. The algorithm initial-
izes the cluster labels using the k-means++ method and iteratively
computes the solution until convergence.

5 COORDINATED VIEWS FOR VISUAL ANALYTICS

Once the highly correlated data samples and dimension variables
have been extracted, we display the data using our coordinated
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Figure 3: Coordinated view of the system, including (a) a classical
PCP, (b) a clustered PCP, (c) a many (one)-to-many PCP, and (d) a
block matrix diagram.

view. In our visualization framework, the coordinated view in-
cludes the (a) classical PCP, (b) clustered PCP, (c) many (one)-to-
many PCP, and (d) block matrix diagram, to illustrate how the mul-
tivariate data is reduced and depict the correlation between the clus-
tered dimensions (Figure 3). Because the other three views were
introduced in [15], this section concentrates on the restatement of
many-to-many PCP and its variant one-to-many PCP.

5.1 Many-to-Many PCP

As mentioned in Section 2, Lind et al. proposed the concept of
many-to-many PCP and evaluated the effectiveness of the tech-
niques [6]. Nonetheless, the idea of how they replicate dimension
variables can be traced back to Theisel’s work [11], and the position
of each axis in the drawing was not fully described. The solution
for small-dimension variables (< 3) is trivial, and Lind et al. solved
the problem for drawing seven-dimension variables. Claessen and
van Wijk then extended Lind’s work and resolved the problem until
eight-dimension variables [3]. In our work, we revisit this prob-
lem by referring to the related work from the study of Claessen and
van Wijk [3] to extend the problem and summarize the solutions for
variables with any integer number of dimensions for general usage.

Algorithm 1 presents our approach for drawing many-to-many
PCP. Note that for the drawing algorithm for less than eight di-
mension variables, we integrate the solution from Claessen and van
Wijk [3]. The proposed drawing algorithm consists of three por-
tions, including drawing axes in the outer, middle, and inner scopes
from the diagram center (see Figure 4(d) and (h)). For each scope,
we iteratively draw the corresponding number of axes in the local
area from the outer to the inner scope. Figure 4 provides variations
of many-to-many PCP with different numbers »n of dimension vari-
ables for 3 <n < 10. For 3 <n < 6, we draw the many-to-many
PCPs as shown in Figure 4(a)-(d). When n =2k+1>7(k € N),
axes are repeatedly and convexly drawn toward a predefined cir-
cular boundary (outer scope) and are aligned on the boundary
of a k+ 2 polygon (middle scope), respectively. In addition, if
n=2k+2>8(keN), an n—1 polygon is added at the center
accompanied by an n — 1 many-to-many PCP.

5.2 One-to-Many PCP

To more deeply investigate a specific dimension variable, we
present another view called one-to-many PCP, which is partially ex-
tracted from the aforementioned many-to-many PCP. This view is
presented because comparing a specific dimension variable against
the remaining dimension variables is a common procedure dur-
ing the analysis process. Thus, showing the correlation between a
combined dimension variable again, the other clustered dimension
variables can be considered, thus promoting further user analysis.
By removing the data not related to the selected dimension, more
screen space can be reused for representing the information.

6 RESULTS AND DISCUSSION

This section presents two experimental results together with dis-
cussions on the present limitations of the approach. Our system is
implemented on a desktop PC with Intel Core-i7 CPU (3.4GHz)

Algorithm 1 Constructing Many-to-Many PCP

Suppose the number of dimension variables is equal to n.
if n < 3 then
Draw as a classical parallel coordinate plot

else
if n < 5 then
Draw dimension variables as shown in Figure 4(a) and (b);
else
if 5 <n <7 then
fori=1to5do
Rotate 27 /(2 x L%J —1) degrees and draw 2 con-
vex edges as shown in Figure 4(e) (outer scope);
Rotate 2 /(2 x L%J — 1) degrees and draw a trian-
gle as shown in Figure 4(e) (middle scope);
end for
else
Setk = [%] ;
for i=1to2xk+1)do
Rotate 27m/(2 x L%j — 1) degrees and draw a k —
1 convex polygon as shown in Figure 4(h) (outer
scope);
Rotate 27 /(2 x L%IJ —1) degrees and draw a k+2
polygon as shown in Figure 4(h) (middle scope);
end for
end if
if (n mod 2) =0 then
Draw n — 1 polygon at the center and align axes on the
boundary of the polygon (see Figure 4(h) (inner scope));
end if
end if
end if

and 4GB RAM. The source code was written in C++ using GSL,
OpenGL, Mesa, and GLUI libraries for advanced computation.

6.1 USDA National Nutrient Data

In our first experiment, we employed the USDA food composition
dataset [1], which has been used in several studies [10, 15, 17].
Each data sample here corresponds to a specific food and the dimen-
sions represent different nutrients in this food. To compare with the
aforementioned results [15], we set K =9 and L =9 in this experi-
ment and followed their analysis process. Figure 5 presents the vi-
sualization result for the USDA dataset, where image (a) shows the
result before and (b) and (c) show the result after applying the bi-
clustering approach. The distortion of axes in many-to-many PCPs
is improved and display area is saved, and resulting in a scalable
result for using many-to-many PCPs.

Based on the previous studies, we know that Energy, Lipid,
and Water are highly correlated [17], and cluster O (Energy and
Water) and cluster 6 (Lipid and VitaminE) are also highly corre-
lated [15]. However, with our many-to-many PCP (n = 9), we
found that the correlation between cluster 0 (combined Energy
and Water) and cluster 8 (combined Calcium, Carbohydrate and
Sodium) is relatively and positively high, as indicated by the lower
amount of crossing between these two combined dimension vari-
ables. Moreover, after confirming the correlation using one-to-
many PCP (n = 9), we found that the correlation between cluster
0 and cluster 8 is higher than the one between cluster 0 and clus-
ter 6 (combined Protein and Vitamin B6), as stated in Watanabe’s
work (see Figure 5(c)). Based on this result, we further investigate
the mutual correlations between the elements in clusters 0 and 8.
We discovered that if either Calcium, Carbohydrate or Sodium is
removed from this combined cluster, we cannot find similar cor-
relation result as described previously. In other words, the high
correlation between cluster O and cluster 8 is newly found once the
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Figure 4: Many-to-many PCPs for the case of 3 <n < 10.
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Figure 5: Visualization results on USDA food nutrient data with 722 records and 18 dimensions [1]. Numbers here represent cluster IDs.
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Figure 6: Visualization results on supernovae dataset with 132 data samples and 14 dimensions [2]. Numbers here represent cluster IDs.

corresponding dimension variables are merged. Previous work also
shows that correlation of Energy and Water, and correlation of Cal-
cium, Carbohydrate and Sodium are high [15]; we can therefore
conclude that cluster 8 may be a latent variable behind the dataset.
Using the many-to-many PCP allows users to review all correlated
pairs and thus it reduces the probability of missing information dur-
ing the analysis process.

6.2 UC Berkeley Supernovae Dataset

In the second experiment, we employed the Berkeley Supernova
Database (SNDB). Each data sample represents an observed super-
nova and each dimension indicates the observed parameters [2, 14].
In this experiment, we biclustered the data matrix using K = 7 and
L =7 and visualized the results with a many-to-many PCP (see Fig-
ure 6). Here, we see that cluster O is highly related to some com-
bined dimension variables. We thus switch to one-to-many PCP
(n = 7) and analyze the correlation between cluster 0 and other
combined dimension variables (Figure 6(c)). Here, correlations be-

tween cluster 0 and clusters 4 and 6 are high. In astronomy, the
magnitude is determined by the brightness parameter and our result
clearly supports this statement. Weakly correlated Si5 parameters
are also well known in the astronomy community, and these corre-
lations can be discovered by even novice users of our system.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to make many-to-many
PCPs scalable by introducing the asymmetric biclustering approach
so that the visual complexity complexity of the result is effectively
reduced. Potential extensions include comparison of our visual-
ization framework to the probability-based asymmetric bicluster-
ing approach [16]. Effectively showing the correlation transitions
of clusters as they vary with time is also an essential topic.
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