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Abstract

Extracting hierarchical structures from networks provides us with an effective

means of visualizing them, especially when they contain complicated node con-

nectivities such as those in traffic and distributed networks. Although many tech-

niques have been developed for such purposes, they often deterministically break

unwanted cycles that may arise from inconsistencies in the network hierarchies,

and thus never seek the best compromise among possible partial orders of nodes

inherent in the cycle. This paper presents an algorithm for inferring such partial

orders by optimizing the network hierarchies along flow paths that are given as

input. Our idea is to extract network hierarchies from round-trip paths as well as

one-way ones by deriving reasonably consistent multi-layered structures even from

possibly inconsistent flow data over the networks. This problem is formulated as

mixed-integer programming where we incorporate additional constraints into fun-

damental layout criteria according to the type and/or expected use of the network.

For better visual readability of the network layout, the nodes in individual layers

are clustered and reordered for minimizing edge crossings, which is followed by



fine adjustment of intervals between neighboring nodes. We study several network

examples to demonstrate the feasibility of the proposed approach including course

dependency charts, railway networks, and peer-to-peer (P2P) networks.

1 Introduction

Real world networks consist of a large number of entities that have complicated rela-

tionships in between. These network structures are usually dominated by their interior

relationships that include several dependency information such as feeding relationships

in ecosystem, task ordering for management, and visiting orders of network nodes in

the Internet. Visualizing such dependency relationships allows us to understand the

overall trends of the internal communication flows inherent in the network. In practice,

this can be accomplished by laying out the entities as network nodes along the commu-

nication flows, which amounts to visually elucidating the underlying hierarchy of the

network. Directed graphs are commonly employed for this purpose since relationships

between the nodes can be easily represented as directed edges in the graphs. Hierar-

chical representation of directed graphs also alleviates visual clutter problems we often

encounter when visualizing complicated networks.

However, conventional techniques primarily focus on hierarchical layout of di-

rected acyclic graphs (DAGs) and often suffer from hair-ball effects as the number

of paths increases (Figure 1(a)). This is because they cannot effectively identify hier-

archical structures inherent in general directed graphs due to unwanted cycles arising

from deadlocks in the dependency relationships. In practice, most techniques try to

cut edges until all the cycles are removed from the network, while this forces us to

ignore possibly significant influence of eliminated edges when inferring the underlying

hierarchical layout. Furthermore, especially in distributed networks, we are more in-

terested in data traffic along a path between a specific pair of nodes for understanding

the overall trend of the network communication. Incorporating such information about



communication paths over the network will provide us with more options for laying

out the network in a hierarchical fashion.

These factors are indeed significant when we try to understand the hierarchical

structure in the Internet. Here, the Internet consists of autonomous systems (ASs),

which are defined as groups of IP networks maintained under the same administrative

control. This implies that data transmission paths between a pair of ASs usually go

up and down in the Internet hierarchy, often by way of the topmost network layer

(such as the Tier 1 layer), and thus investigating such an AS hierarchy gives us a hint

on the structure of specific sub-networks such as peer-to-peer (P2P) networks [20]

(Figure 1(b)).

In this paper, we present an algorithm for inferring such hierarchical structures from

available network flows through constrained optimization. Our idea is to construct rea-

sonably consistent network hierarchy by referring to the ordering of nodes along all

the communication paths, regardless of whether the associated paths are consistent or

not. This is accomplished by formulating the problem as mixed-integer programming,

where we incorporate several fundamental design criteria as hard and soft constraints.

As a post-process, the visual readability of the hierarchical layout is improved by rear-

ranging nodes in the same hierarchical layer to minimize edge crossings and overlaps.

The remainder of this paper is structured as follows: In the next section, we briefly

summarize related work. We then present an overview of our algorithm for laying out

networks in a hierarchical fashion. In practice, the proposed algorithm consists of the

extraction of network hierarchies from both one-way and round-trip communication

paths, while nodes in the individual layers are further grouped and rearranged both for

reducing visual clutter and accelerating the computation. Several experimental results

are also presented to demonstrate the feasibility of our formulation, which are followed

by the conclusion of this paper together with future work.



2 Related Work

Visualizing networks is one of the promising approach for mining them for their spe-

cific characteristics [1]. Among them, real world networks are often ubiquitous and

have long been thought of as hierarchical in nature [34]. This can be easily imagined

because networks often exhibit clustered organization, as suggested by many recent

studies [22, 27, 37]. Nonetheless, the hierarchical structure implicitly embedded in the

network is usually more informative than the clustered organization of network nodes,

especially when the network contains cycles that incur deadlocks in the dependency re-

lationships between them. For example, in the Internet, ASs are considered as groups

of routers that have the same routing policy. As described in Gao et al. [20], these

routing policies are commonly constrained by the commercial strategies between ad-

ministrative domains, and the order of visiting nodes along each communication path

helps to infer AS dependency relationships in the Internet. Despite this, we sometimes

cannot uniquely fix the dependency between some pairs of ASs especially when they

are in the same network layer. It thus gives us a strong motivation to extract reasonably

consistent hierarchical structure even from such possibly insufficient and inconsistent

communication data, so that we can maximally clarify the underlying trend in data

communication over the multi-layered network.

For visualizing network structures in a hierarchical fashion, directed graphs with

layered drawing styles are commonly used to reveal the node dependency. According

to the survey of hierarchical drawing algorithms [24], the techniques can be categorized

into two main groups: one is for directed acyclic graphs (DAGs) and the other is for

general directed graphs. The pioneering and most popular method for drawing DAGs

is Sugiyama’s framework [33], which distributes the network nodes to each layer by

incorporating several criteria such as uniform edge orientation. Various extensions have

been introduced to improve this framework, which include edge crossing minimization

by using confluent drawings [16] and minimal insertion of dummy nodes [29] for better



network layouts. An accelerated version of Sugiyama’s framework was developed by

Eiglsperger et al. [15], where they kept the number of dummy nodes and edges linear

in the size of the graph without increasing the number of crossings. Di Battista et

al. [11] proposed an experimental study for comparing the performance of Sugiyama’s

layer-based layout and the grid-based layout [9], and showed trade-offs between the

two layout aesthetics and computation times. Afterward, constrained versions of DAG

drawing algorithms have been devised, so that we can control the number of layers and

that of nodes at each layer in the network layout [5, 30].

Although drawing typical directed graphs as well as constrained DAGs is NP-hard,

several heuristic algorithms have been proposed to tackle the problem. The most in-

tuitive way is to break the cycles by cutting less important edges and then apply con-

ventional DAG layout algorithms [19]. Selecting edges to be removed is commonly

known as a feedback arc set (FAS) problem [10] and has been intensively studied so

far. In practice, this edge removal strategy allows us to identify the backbone structure

of the network as a tree, and then employ the depth of each node in the tree as its layer

number in the network hierarchy [19, 24]. Another idea is to distribute the network

nodes to a set of concentric circles according to its layer number [32, 2]. This concen-

tric layout style can be further sophisticated by taking into account the distinguished

cycles, which often appear as recurring processes in biosciences for example [4, 3]. Of

course, 3D versions of hierarchical drawing techniques are also helpful for alleviating

visual clutter in the network layout, by taking advantage of depth perception [21, 25].

Rearranging the nodes at the respective layers for aesthetic network layouts will

also become an crucial issue especially when we have to handle a large number of net-

work nodes and edges. Gansner et al. [19] and Gange et al. [18] devised techniques

for minimizing edge crossings while drawing every flow path within the limited screen

space will cause severe visual clutter. For example, Dwyer et al.[14] presented a con-

cept of power graph for alleviating this problem, where they grouped a set of nodes into



a cluster in order to reduce distracting visual clutter in networks of general type. Onoue

et al. [31], on the other hand, proposes edge concentration techniques for contracting

edge connectivities to enhance the associated network readability.

As shown in the survey papers by Nettleton [28], conventional graph mining tech-

niques focus on the analysis of shortest paths among topological structures of networks.

In our approach, instead of such simple pairwise relationships, we take observed path

information between end nodes as input, on the assumption that most paths go up and

down consistently with respect to the hierarchical levels. Unlike conventional energy-

based optimizations with soft constraints only [6, 12, 13, 7], we employed mixed-

integer programming formulation to incorporate additional hard constraints in addition

to soft constraints for various application purposes. Several relevant approaches are

done [19, 26, 18] in that they also introduced mixed-integer programming, while it was

employed not for inferring optimal network hierarchies but for optimizing the place-

ments of network nodes at given hierarchical levels. On the other hand, our approach

incorporates the mixed-integer programming in order to infer the consistent network

hierarchy, and also allows us to adaptively design the hierarchical layout according

to the type and/or expected use of the target networks, by introducing additional con-

straints and costs to our formulation. We will further optimize horizontal ordering of

nodes at the respective hierarchical layers for better readability of the network layout.

3 Overview

This section presents an overview of our approach to visualizing network hierarchies

by taking as input dependency paths over the networks. A typical case of such network

paths corresponds to one-way dependency paths that are expected to ascend or descend

monotonously in a single direction through the hierarchical layers, as shown in Fig-

ure 2(a). Examples of this one-way type include predator-prey relationships in ecosys-

tems, course dependency in school curricula, and task orderings in decision graphs.



On the other hand, we also encounter a different type of dependency relationship espe-

cially in networks having a relatively small number of hub nodes. In this case, a route

is likely to compose a mountain like path as shown in Figure 2(b), since it often has to

travel between two end nodes by way of several hub nodes at upper hierarchical layers.

Railway transfer and flight plan routes are examples of such round-trip paths as well as

traffic routes in the Internet. More details of the formulation will be addressed in what

follows.

Figure 3 represents the overall flow of the algorithm, which primarily consists of

two stages. On the left of the figure, a conventional force-directed layout of the network

is exhibited. In the first stage, we extract network hierarchies by inferring optimal

partial orders of nodes from given dependency paths as shown in the middle. After

that, we reorder the sequence of nodes at each hierarchical layer to minimize edge

crossings and overlaps for better readability as shown on the right. Technical details of

these two stages will be covered in the next two sections.

4 Inferring Network Hierarchies

In this section, we first tackle one-way paths to extract consistent network hierarchies,

and then extend the idea to handle round-trip paths.

4.1 Extracting hierarchies from one-way paths

Here, we formulate one-way hierarchy extraction problems as the mixed-integer pro-

gramming, which helps us visualize the network structure by arranging its nodes in a

single hierarchical order. In our formulation, we employed three criteria, each of which

will be detailed below.

Consistent hierarchical ordering Suppose that two nodes pi and pi+1 appear in this

order along a one-way dependency path. A natural idea is to place these nodes in a way



that pi+1 is higher than pi in the network hierarchy. This is achieved by introducing the

following constraint:

l(pi)− l(pi+1)≥ 1, (1)

where l(pi) represents a positive integer that corresponds to the layer ID of node pi,

and the constant 1 on the right side corresponds to the minimal difference in the layer

ID between the neighboring nodes along the path. Here, we assume that a higher hier-

archical level has a smaller layer ID, as shown in Figure 4. This formulation allows us

to infer a consistent ordering of nodes along each path with respect to the hierarchical

level.

Nonetheless, it is still possible that we have another path that is inconsistent with

the dependency relationships of the existing paths. Figure 4(b) shows such a case

where the node ordering in the new path H-D-F-A, which is drawn by blue dotted

arrows, conflicts with that of the previous path H-F-D-A. Actually, incorporating such

an inconsistent path may let us find cycles in the dependency network. To make this

unexpected case still feasible in our framework, we introduce an integer penalty value

νi,i+1 into Eq. (1) as:

l(pi)− l(pi+1)≥ 1−νi,i+1. (2)

Eq. (2) implies that we can place pi and pi+1 at the same hierarchical layer or reverse

the order of these two nodes by increasing the penalty value νi,i+1. However, we may

still want to keep the monotonicity of the node ordering with respect to the hierarchi-

cal level, even in the worst case, by equalizing the layer IDs of neighboring nodes.

This leads to the idea of restricting the upper limit of νi,i+1 to 1 to a certain extent,

and then making the penalty value νi,i+1 optionally increase. This is accomplished by



decomposing νi,i+1 in Eq. (2) into two penalty integer values µi,i+1 and δi,i+1 as:

l(pi)− l(pi+1) ≥ 1−µi,i+1 −δi,i+1,

where 0 ≤ µi,i+1 ≤ 1 and 0 ≤ δi,i+1.
(3)

As described earlier, setting the penalty value µi,i+1 to 1 amounts to placing pi and

pi+1 in the same hierarchical layer as shown in Figure 4(c), and further increasing the

value δi,i+1 will reverse the original dependency ordering between these two nodes.

Thus, when defining the objective function to be minimized, we assign a small weight

value to µi,i+1 for readily equalizing the hierarchical levels of the two nodes, while

we employ a large weight value for δi,i+1 to further penalize for reversing their depen-

dency relationship. Here, we minimize the objective function E, which is defined as a

weighted sum of penalty values µi,i+1 and δi,i+1:

E = weCe +wrCr, where

Ce = ∑
k

∑
i,i+1∈Pk

µi,i+1, and Cr = ∑
k

∑
i,i+1∈Pk

δi,i+1. (4)

Here, we and wr (we ≤ wr) are the weights for µi,i+1 and δi,i+1, respectively, and Pk is

the set of node indices along the k-th path.

Note that, in our formulation, we can adhere to equalizing the layers of two nodes

in conflict by raising the relative ratio s = wr/we (Figure 4(c)). On the other hand,

we can lower the ratio in order to respect the predominant dependency relationship

between them (Figure 4(b)). Suppose that we have m directed edges from pi to pi+1

and n edges for its reverse. The cost E of Eq. (4) will be:

E =























(1+ s)wen if l(pi)> l(pi+1)

we(m+n) if l(pi) = l(pi+1)

(1+ s)wem if l(pi)< l(pi+1).

(5)

This suggests that l(pi) > l(pi+1) when m > sn, l(pi) < l(pi+1) when m < n/s, and



l(pi) = l(pi+1) otherwise. We set s = 1.5 by default to keep a fair balance among the

three cases.

Minimal difference in layer On the other hand, we also want to remove redundant

layers in the hierarchical layout of the network, by maximally reducing the difference

in the layer ID between each pair of neighboring nodes along the path. Indeed, this

allows us to keep the network hierarchy as compact as possible. Toward this goal, we

introduce another integer value λi,i+1 to represent the absolute difference between a

pair of successive nodes as follows:

l(pi)− l(pi+1) ≤ 1+λi,i+1,

l(pi)− l(pi+1) ≥ −1−λi,i+1, and

λi,i+1 ≥ 0.

(6)

Note that, in this formulation, we allow the minimal absolute difference 1 from the

beginning, since we want to avoid any conflict between the penalty values. We can

minimize the total number of hierarchical layers by summing up the values λi,i+1 to the

new cost term:

Cd = ∑
k

∑
i,i+1∈Pk

λi,i+1. (7)

This means that, in the case of one-way paths, the final version of the objective function

E can be defined as

E = weCe +wrCr +wdCd , (8)

where wd is a weight value assigned to the term Cd in Eq. (7).

Number of hierarchical layers Sometimes, we are forced to excessively suppress

the number of hierarchical layers in designing the network layouts, especially when we

have to fit the entire network layout to the space of predefined size. In our formulation,



we can explicitly set the limit number of layers to N, by restricting the layer ID of each

node pi as

0 ≤ l(pi)≤ N −1. (9)

4.2 Extracting hierarchies from round-trip paths

Inferring network hierarchies from round-trip network paths is more involved because

this amounts to identifying the hub node at the topmost layer along each communica-

tion path. In the remainder of this section, we formulate the constraints for the round-

trip paths by extending the previous formulation for the one-way case.

Valley-free paths As pointed out by several literature, the routing policy under Bor-

der Gateway Protocol (BGP) is usually valley-free [20, 34, 36]. Figure 5(a) shows an

example of such a valley-free round-trip path G-E-B-A-C, which has only one turning

point at A with respect to the hierarchical level. For example, in the case of distributed

networks, nodes G and C can be considered as end user nodes, while other intermediate

nodes correspond to routers provided by Internet service providers (ISPs). The afore-

mentioned literature suggests that we can encode all communication paths in this case

as valley-free paths when inferring the hierarchical structure of distributed networks.

Recall that Eq. (3) corresponds to the constraint that node pi+1 is higher than node

pi in the network hierarchy along an ascending path. If two nodes pi and pi+1 are on a

descending path instead, we can write the corresponding constraint as:

l(pi)− l(pi+1)≤−1+µi,i+1 +δi,i+1. (10)

However, along a valley-free round-trip path, we have to switch the constraint from

Eq. (3) to Eq. (10) when we pass through the turning point, such as node A in Fig-

ure 5(a) for example. This requires us to encode the orientation of each edge along

the path with respect to the hierarchical level. In our approach, we employ two binary



values αi,i+1 and βi,i+1, where αi,i+1 becomes 1 if the corresponding edge pi pi+1 is as-

cending while βi,i+1 is 1 if the edge is descending. Introducing these two binary values

allows us to rewrite Eqs. (3) and (10) as:

l(pi)−l(pi+1)≥αi,i+1−M(1−αi,i+1)−µi,i+1−δi,i+1

l(pi)−l(pi+1)≤−βi,i+1+M(1−βi,i+1)+µi,i+1+δi,i+1,
(11)

where M is some large value and used to validate the two inequality constraints when

αi,i+1 and βi,i+1 vanish. Since the edge pi pi+1 is either ascending or descending,

αi,i+1 +βi,i+1 = 1. (12)

Now we are ready to formulate the criterion for valley-free paths as a constraint,

which can be written as:

Nk−2

∑
i=0

∑
i,i+1,i+2∈Pk

(αi,i+1 ⊕ αi+1,i+2) = 1,

α0,1 = 1, βNk−2,Nk−1 = 1,

(13)

where αi,i+1 ⊕ αi+1,i+2 is defined as an “XOR” operation on αi,i+1 and αi+1,i+2, and

Nk represents the number of nodes on the k-th path Pk. Clearly, the above equation

ensures that each path has only one turning point between ascending and descending

phases. Figure 5(b) shows an example of the k-th path, where α2,3 ⊕α3,4 = 1 in this

case. Note that we set the first edge of Pk as ascending by α0,1 = 1, and the last edge

as descending by βNk−2,Nk−1 = 1.

5 Drawing Nodes at Each Hierarchical Layer

After having distributed the network nodes to the hierarchical layers, our next task

is to seek better ordering of the nodes at each individual layer to maximally reduce

the visual clutter arising from edge crossings and overlaps as shown in the middle of



Figure 3. We carry out this layout enhancement as a post-process, by taking advantages

of conventional algorithms developed by Gange et al. [18] and Gansner et al. [19].

5.1 Grouping and Rearranging Nodes

In this approach, we incorporated a new step for grouping the network nodes, which

allows us to accelerate the layout computation by reducing the number of primitive

components in the network as well as to improve visual readability by concentrating

edges between these groups. This means that the new step lets us optimize the horizon-

tal orders of node clusters at each layer first, then rearrange those of nodes inside the

respective clusters, and finally conduct fine adjustment of space between every pair of

adjacent nodes, This visualization pipeline effectively provides us with better readabil-

ity of the network layout, especially when the network has a large amount of nodes.

The overall optimization process consists of three steps as described below.

Inserting dummy nodes After having inferred partial orders of network nodes, it is

possible that two nodes are not immediate neighbors in the network hierarchy, which

means that the corresponding edge inevitably passes across one or more intermediate

layers in between. In this case, we insert dummy nodes as intersections of the edge

with the intermediate layers to guide the shape of that edge in the final layout. Now the

edge is replaced by an alternating sequence of intermediate dummy nodes and edges,

which is bounded by original two end nodes. The corresponding process is illustrated

in Figures 6(a) and (b).

Grouping nodes into a set of clusters In the second step, we consider nodes shar-

ing common neighbors (including dummy nodes) as similar, and group them into a

set of clusters. Indeed, this process successfully reduces the complexity of network

connectivity and thus leads to accelerate optimization of node ordering at the respec-

tive layers. For grouping the network nodes at each hierarchical layer, we introduced



the conventional Jaccard coefficient as the similarity for evaluating every pair of nodes

at the same layer [8], which is defined as J(A,B) = |A∩B|/|A∪B|. Here, A and B

represent the sets of network nodes at the neighboring layers that are incident to the

two nodes, respectively. For grouping nodes at each hierarchical layer, we conduct

hierarchical clustering based on the Jaccard coefficient [38], which selectively groups

the most similar pair of nodes one by one until the total number of node clusters is no

larger than the predefined number c, where c = 10 by default. Figure 6(c) shows such a

case where the nodes are grouped into three clusters, which are drawn in red, green, and

blue, respectively. Note that we can adjust the number of clusters at each layer by inter-

actively controlling the similarity threshold (indicated in green) over the dendrogram

that represents the hierarchical clustering of nodes. Figure 7 shows such an interface

where dendrograms (from left to right) corresponds to the hierarchical clustering of

nodes at the respective hierarchical layers (from top to bottom) in Figure 6.

Rearranging Horizontal Ordering of Nodes The third step is to rearrange the order

of node clusters (including single nodes) at each hierarchical layer, so that we can

minimize the edge crossings between neighboring layers and edge overlaps within the

same layer. For this purpose, we employ the mixed-integer programming formulation

of Gange et al. [18], while we improved the associated algorithm by introducing a two-

step optimization approach. Figures 6(d) and (e) provide steps of this process, where

we first rearrange the ordering of node clusters, and then optimize the order of nodes

inside each cluster, respectively. Note that each optimization step reduces distracting

edge crossings.

Adjusting horizontal spacing between nodes Once the overall order of the nodes

has been fixed, we minimize a horizontal displacement between end nodes for each

edge if it bridges neighboring layers. Here, we incorporated another mixed-integer

programming formulation by Gansner et al. [19], while we again assigned different



weights to the edges according to the types of their end nodes. More specifically, we

assigned relatively larger weights for edges having dummy end nodes so that we can

strictly penalize the horizontal displacements of those edges. This effectively allows

us to align edges that bridge two dummy nodes as vertical as possible while mini-

mizing their intersections with other edges of the same type, which helps us enhance

our rendering style as described later. Additionally, so as to allow users to effectively

explore a specific path in the networks, we newly incorporated constraints that keep

the selected path, which is colored in red red, as straight as possible, by minimizing

horizontal displacements of edges along the path as shown in Figure 6(f).

5.2 Edge Concentration based on Node Clusters

Grouping nodes into clusters at each layer permits us to enhance the visual readability

of the network by reducing the number of node primitives such as single nodes and

node clusters, while it also incurs a different type of visual clutter arising from high

degree of such node primitives. Thus, we newly invented rendering styles for the node

clusters and their associated edges using edge concentration techniques (e.g. [31]).

Rendering node clusters As described earlier, we apply hierarchical clustering to

the nodes at each layer by taking advantage of the Jaccard coefficient, so as to group

similar nodes into clusters. We reflect the node clustering results into our representa-

tion of the hierarchical network. Suppose we have a hierarchical network as shown in

Figure 8(a). In this case, we actually draw each node cluster as a region that encloses

the associated nodes as shown in Figure 8(b). Recall that the number of node clusters

at each layer can be adjusted by vertically sliding the similarity threshold bar with our

interface as shown on the left of Figure 8(b).

Rendering concentrated edges Once we enclosed node clusters by green regions,

we draw each traversal path passing through the node primitives. However, in this



process, we just draw a single edge if two node primitives at adjacent levels share

multiple edges. Figure 8(c) shows such an example where multiple edges between two

node primitives are concentrated in a single edge. Our aforementioned clustering policy

decomposes the edge crossing problem into cluster ordering problems together with

node ordering problems. Based on this strategy, we can effectively reduce the number

of edges and crossings by further incorporating the edge concentration technique [31].

In our implementation, a greedy algorithm has been incorporated for finding complete

bipartite subgraphs, i.e., biclique covers, in order to maximally reduce the number of

edges in the hierarchical network layout. You can find an example of a biclique within

a red rectangle in Figure 8((coffee)), which will be bundled by the cross mark icon

node around the midpoints of the edges as shown in Figure 8((drink)). Note that this

edge concentration process is performed independently for each pair of two adjacent

layers.

Although this network representation maximally avoids visual clutter arising from

the edge crossings and overlaps, it is too simplified to explore the details of the associ-

ated network flows. In our implementation, we also prepared an option to associate a

visual metaphor that offers a symbolic representation on how each node in the cluster is

connected with adjacent node clusters, as shown in yellow in Figure 8(e). In practice,

in Figure 8(e)), we draw red edges from the nodes G, H, and I to the right yellow node

at the top of the cluster, since they originally have connections with the right cluster

(containing L, F , and M) at the upper layer, while only one edge to the left yellow node

from G only because H and I has no connections with the left cluster (containing N

and E) at the upper layer.

6 Results and Discussion

This section provides implementation details, experimental results, and discussion on

limitations of this approach.



6.1 Implementation details

For demonstrating the feasibility of our approach, we have developed a visualization

system that infers the underlying consistent hierarchies of the given network data. Note

that our system has been implemented on a desktop PC with Quad-Core Intel Xeon

CPUs (3.7GHz, 10MB cache) and 12GB RAM, and the source code was written in

C++ using OpenGL for drawing network hierarchies, OpenCV for handling images,

IBM ILOG CPLEX for solving MIP optimization problems. To explicitly clarify the

direction of network flow, we followed the design principles collected by Ware [35],

where we incorporated the gradient color from yellow to purple for guiding the flow

direction. Moreover, we assigned different depth values to the network edges according

to the types of their end nodes, so that we can effectively hide edges associated with

dummy nodes behind other types of edges. We also introduced halo effects [17] to

our rendering style for further visual clarity, and maximally aligned dummy edges as

vertical as possible to reduce their visual conflict with other types of edges spanned by

regular end nodes.

6.2 Application examples

Here we demonstrate three application examples, course dependency in a school cur-

riculum, accessibility zones of metro networks, and communications over peer-to-peer

(P2P) networks. The first case illustrates how we can visualize network hierarchies

by investigating one-way ordering paths, while the last two cases are more involved in

the sense that we have to infer the network hierarchies from round-trip paths on the

assumption that the majority of the paths are valley-free. Note that we set we = 100,

wr = 150, and wd = 1 in Eq. (8) and choose the number of layers N to be sufficiently

large unless specifically stated otherwise. Table 1 shows computation times for opti-

mizing the network layouts, where we employed node clustering only in the last case

on P2P networks.



Course dependency in school curriculum Dependency relationships among courses

in the university curriculum lead to a typical network example, from which we can in-

fer consistent hierarchical structures using the proposed approach. Suppose that we

are currently designing the hierarchy of courses in a computer science 6-semester cur-

riculum, where we expect to take as input a set of students’ course completion records.

Figure 9(a) shows the network of course nodes arranged using the conventional force-

directed algorithm, while from this layout, unfortunately, we cannot retrieve any mean-

ingful structures hidden behind the dependency among courses intuitively. By taking

advantage of our formulations described in Section 4.1, we can design the hierarchy

of courses. We first employ the weight assignment we = 100, wr = 100, and wd = 1

to design the curriculum as exhibited in Figure 9(b). By increasing wr to 150, we can

allow more courses to be included in the individual semesters (i.e., semesters) as given

Figure 9(c).

We can also maximally equalize the number of course credits students can take in

each semester. Let us denote the number of credits approved for the j-th course by s j.

We also define the binary value τi, j so that τi, j = 1 if the j-th course is scheduled at

the i-th hierarchical level; otherwise τi, j = 0. This setup makes it possible to count the

total number of credits available for the i-th hierarchical level as Si, which can be given

by:

Si = ∑
j

s jτi, j,
N−1

∑
i

τi, j = 1, and
N−1

∑
i

i · τi, j = l(p j). (14)

If we constrain the number of credits so that it decreases as the hierarchical level goes

higher by applying Si+1 −Si ≥ 0 (0 ≤ i ≤ N−2), we can obtain the revised layout of

the courses as demonstrated in Figure 9(d), where the sums of credits are 14, 16, 17,

17, 17, and 17 as the layer ID increases (from top to bottom).



Accessibility zones of metro networks As the first application example of handling

round-trip paths, we employed metro lines running in the Tokyo area and tried to infer

the underlying accessibility zones from the city center. This is made possible by as-

suming that every metro line in Tokyo leaves a station in the suburb, runs throughout

the center of Tokyo, and finally reaches another station in the suburb. Figure 10(b)

shows the Tokyo metro map, where 225 stations are connected by 13 metro lines.

In our experiment, we tried to infer the accessibility zones of stations by taking as

input all the 13 metro lines as round-trip paths. Figure 10(a) presents an optimized

layout where we finally obtained 28 hierarchical layers due to the effect of Eq. (7),

where we employed the default setting of weights we = 100, wr = 150, and wd = 1

in Eq. (8) to discriminate between station zones. Note that nodes annotated with “T”

correspond to interchange stations at which two or more metro lines meet. We also

rendered the background of the Tokyo metro map in Figure 10(b) by classifying the

inferred layer IDs into six groups, in order to visualize accessibility zones from the city

center. Here, we assign a different color to the Voronoi cell of each station according

to its corresponding zone, where brighter colors are assigned to stations closer to the

center.

We asked an expert in cartography to evaluate this visualization result. He found

this zone partitioning interesting in that we can intuitively identify hub stations in the

metro network. He also suggested that the result will serve as a basis for planning new

public transportation service, and can be further augmented by incorporating statistics

on the numbers of passengers along the lines. Figure 10(c) shows the result with our

visualization with node clusters and contracted edges, and allows users to trace the

paths more easily.

Peer-to-peer (P2P) networks As the last application example, we tackle the visu-

alization of P2P networks by inferring the underlying hierarchical layers from com-

munication paths, which was obtained through the measurement method in [39]. In



this example, we assume that almost all the available communication routes are non-

valley round-trip paths [20, 34, 36], in the sense that each path starts from some end

node to ascend through the AS hierarchy and then descend to reach another end node,

while having a single turning point with respect to the hierarchical layer. Figure 1(b)

exemplifies an optimal layout of a relatively small-sized P2P network from round-trip

communication paths. Note that, in this figure, we always annotate end nodes by icons

of computer monitors, while other intermediate nodes by those of server PCs.

In the same way, we can infer the hierarchical structure of another medium-sized

P2P network as shown in Figure 11(a). Here, we try to sophisticate the network lay-

out by seeking suggestions from domain experts. First, we tried to adjust the overall

shape of the network hierarchy to look like a pyramid. This can be accomplished by

penalizing the network nodes at the higher layers by incorporating a new cost term as

follows:

Cl =
n−1

∑
i=0

(N − l(pi)), (15)

where N represents the predefined number of hierarchical layers as described earlier.

Domain experts also suggested a common principle that network nodes at higher hier-

archical layers are more likely to have a larger number of connections with other nodes.

This suggestion enables us to formulate an additional cost term as follows:

Cg =
n−1

∑
i=0

deg(pi) · l(pi), (16)

so that we can penalize nodes having more incident edges if they stay in lower hierar-

chical layers. Note here that deg(pi) represents the degree of the i-th node in the P2P

network. By employing the new combination of cost terms:

E = weCe +wrCr +wdCd +wlCl +wgCg, (17)



where we = 102, wr = 104, wd = 1, wl = 10, and wg = 2, we can rearrange the network

layouts as shown in Figure 11(b).

Another visualization example of concetrated a large-sized P2P network is demon-

strated in Figure 11(c), where we can still identify global trends of data communication

among end nodes as a set of non-valley routes over the network. Figure 11(c) shows

our final result with node clusters and contracted edges. We also applied the node or-

dering algorithm by Gange et al. [18] and Gansner et al. [19] to the same dependency

data, and the result is summarized in Table 2.

6.3 Discussions

In the previous subsections, we detailed the algorithm and demonstrated several appli-

cation results of our approach. In this subsection, we provide side-by-side comparison

showing how the choice of path and topological structures will affect the visualization

results. To provide some intuition on the relationship between the hierarchy of a graph

and its topological connectivity, we compared our inferred hierarchy of the respective

node with its accumulated geodesic distances over the graph [23]. Figure 12 provides

comparison between the hierarchical levels and accumulated geodesic distance at the

respective nodes over the P2P network that is the same as that in Figure 11. Note that

the corresponding color legend in the figure indicates the hierarchical layer and accu-

mulated geodesic distance at each node, respectively. The comparison suggests that

the nodes at the top hierarchical layer, which are colored in red, are relatively far away

from the geodesic center of the network in this specific case of the P2P network. This

implies that the dominant nodes in the network hierarchy can be different from those

for the ordering of distances from its topological center.

Besides path information, difference in the topology of the network also influences

on the inferred hierarchy in the generated visualization. For this purpose, typical net-

work structures were investigated using the proposed approach. Figure 13 demon-



strates the results on several representative topological structures, including a (16,5)-

banana tree, a small-world network, a scale-free network, and a random network. To

generate a set of traversal paths, we randomly select the starting node of the individ-

ual path and recursively perform a random walk on non-visited incident edges under

certain probability until all edges are covered. Note that these four networks have the

same number of nodes for the comparison. Moreover, the color of the network node in

the figure ranges from red to purple according to the corresponding hierarchical level,

and the number indicates the ID assigned to each node cluster.

In the case of the (16,5)-banana tree in Figures 13(a) and (b), top layer nodes,

colored in red, are very close to the topological center. Simultaneously, nodes with the

same cluster ID are more likely to share their parent at the adjacent layer due to the

similarity based on the Jaccard coefficient. Basically, the same can be applied to the

small-world network in Figures 13(c) and (d), while more number of conflicts among

the paths were resolved since the networks cycles this time, which increases the number

of nodes at intermediate layers as a result. The scale-free network in Figures 13(e) and

(f), on the other hand, produces more complicated hierarchy where high-degree nodes

stay around high layers, while nodes with low degree again shares the same cluster

if they are connected to the same adjacent node. Finally, the random graph again

produced a complicated hierarchy while it has a relatively large number of nodes at

the intermediate layers since it contains more conflicts among traversal paths over the

network as shown in Figures 13(g)-(h). Of course, the resulting network hierarchy

strongly depends on the given set of parts over the network while the topology of the

network also influences on the appearance of the network hierarchy to a certain extent.

The scalability of the proposed approach is primarily limited by the number of de-

pendency relationships between pairs of nodes in the network. A naive approach for

clustering the network nodes may alleviate the problem by simplifying the network



complexity, although at the risk of overlooking important local dependencies among

network nodes. Another possibility suggested by our experiments is that we first spare

a sufficient number of hierarchical layers N in our optimization, and then merge multi-

ple layers into one according to the given requirements later. Indeed, this considerably

accelerates the overall computation because we can maximally avoid penalizing incon-

sistency in the partial ordering of nodes along each path, while a new algorithm for

fitting the entire network hierarchy to a smaller number of layers remains to be care-

fully formulated. Another option is to permit feasible solutions as well as fully optimal

ones in the mixed-integer programming optimization, especially when we are forced

to optimize a large network layout within a certain period of time. Prior knowledge

obtained from domain experts can also allow us to sophisticate the formulations of

constraints and objective functions, and thus further accelerate the computation, which

is again left as future work.

7 Conclusion

This paper has presented an approach to inferring network hierarchies from available

dependency relationships among nodes. Our algorithm can calculate consistent hier-

archical structures hidden behind the input network even from possibly inconsistent

orders of nodes, both from one-way and round-trip paths. The contribution of this

paper lies in the formation of constrained optimization for inferring such consistent

hierarchies in the network, by taking advantage of the mixed-integer programming for-

mulation. Visual clutter arising from the network layouts have been further suppressed

by rearranging the horizontal order of nodes at each hierarchical layer. We tested our

proposed formulations on three application examples, which demonstrated the robust-

ness of our approach against various types of networks.

Incorporating further improvements in terms of scalability is still an important

theme for future research. Semantic reasoning of the network hierarchies also helps



us devise new formulations of constraints and objective functions for better clarifying

the underlying hierarchies in the network. More aesthetic rendering styles will enhance

our visual understanding of hierarchical structures irrespective of the complexity of the

network.
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Figure 1: Examples of P2P network representation. (a) Hierarchical layout of the net-

work obtained using the algorithm by Gansner et al. (b) Inferring optimal hierarchies

from dependency between nodes of a P2P network extracted from round-trip commu-

nication paths.



(a) (b)

Figure 2: Networks with two different types of dependency paths. (a) One-way paths.

(b) Round-trip paths. The sequences of nodes on the top represent input dependency

paths and network layouts on the bottom show the inferred hierarchical structures of

the networks.



Figure 3: Overview of the present framework.
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Figure 4: Extracting hierarchy from one-way paths. (a) Consistent edge orientations

along a path. (b) Inserting an inconsistent path into the network. (c) An optimized

layout.



(a) (b)

Figure 5: Extracting hierarchy from Round-trip paths. (a) A path with reversed direc-

tion at a certain node. (b) Computing α values along the path.



(a) (b)

(c) (d)

(e) (f)

Figure 6: Rearranging nodes at hierarchical layers. (a) Initial network layout. (b)

Dummy nodes added. (c) Grouping nodes into clusters at each layer. (d) Node clusters

rearranged. (e) Nodes rearranged within each cluster. (f) Space adjustment between

neighboring nodes.



Figure 7: Dendrogram interface that represents the hierarchical clustering of nodes at

the respective layers in Figure 6.



(a) (b) (c) (d) (e)

Figure 8: Rendering node clusters and contracted edges. (a) Initial network layout. (b)

Nodes are grouped into clusters at each layer. A dendrogram on the left shows how

we can adjust the similarity for controlling the number of node clusters. (c) Edges are

contracted by referring to the node clusters. (d) Concentrated edges between clusters

where the cross mark corresponds to a biclique (i.e., complete bipartite subgraph). (e)

Symbolic representation that reveals how each node in the cluster is connected with the

adjacent node clusters.



(a) (b)

(c) (d)

Figure 9: Designing curricula in the department of computer science. (a) Network

layout obtained using the conventional spring-based method. (b) Hierarchical layout

with we = 100, wr = 100, and wd = 1. (c) Hierarchical layout with we = 100, wr = 150,

and wd = 1. (d) Additional constraints are imposed for equalizing the number of credits

at the respective layers.



(a) (b)

(c)

Figure 10: Tokyo metro network. (a) Layered representation of the Tokyo metro net-

work where interchange stations are annotated with “T.” (b) Accessibility zones de-

duced from the hierarchy of the metro network, where downtown areas are rendered in

brighter colors. (c) Visualization with node clusters and contracted edges



(a) (b) (c)

(d)

Figure 11: Visualizing hierarchical structures of P2P networks using our approach. (a)

Clusters distributed at each hierarchical layout. (b) Cluster connectivity graph. (c)

Optimized layout of another relatively large-sized P2P network.



(a) (b)

Figure 12: Comparison between the (a) hierarchical levels obtained using our approach

and accumulated geodesic distances at the respective nodes of the P2P network.





(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Networks with different topological shapes. This includes (a) a banana-

tree with #{N} = 81, #{E} = 80, and #{P} = 45, (c) a small-world network with

#{N} = 81, #{E} = 81, and #{P} = 43, (e) a scale-free network with #{N} = 81,

#{E} = 170, and #{P} = 72, and (g) a random graph with #{V} = 81, #{E} = 183,

#{P}= 70.



Table 1: Computation times (in seconds) at steps of inferring hierarchical layers (layer),

minimizing visual clutter (cross), and optimizing node spacings (space). #{N}, #{E},

and #{P} are the numbers of nodes, edges, and paths, respectively.

Example layer cross space #{N}/#{E}/#{P}
Fig. 1(b) 2.65 10.72 0.01 61/136/156

Fig. 10(a) 12.68 0.11 0.00 151/160/31

Fig. 11 36.99 2.57 0.01 116/306/525



Table 2: Comparison of crossing number and computation times (in seconds) at steps

of node ordering optimization by us, Gansner et al. [19], and Gange et al. [18], while

the formulation provided by Gange et al. cannot solve the problem in a reasonable

time.

Examples
Ours Gansner et al. Gange et al.

cross time cross time cross time

Fig. 1(b) 1129 10.73 1267 0.01 N/A N/A

Fig. 10(a) 3 0.041 86 0.01 41 4.53

Fig. 11 7445 2.57 6292 0.01 N/A N/A


