International Meeting on High-Dimensional Data-Driven Science (HD?-2015) IOP Publishing
Journal of Physics: Conference Series 699 (2016) 012009 doi:10.1088/1742-6596/699/1/012009

Data-driven approach to Type Ia supernovae:
variable selection on the peak luminosity and
clustering in visual analytics

Makoto Uemura!, Koji S Kawabata!, Shiro Ikeda?, Keiichi Maeda?,
Hsiang-Yun Wu?, Kazuho Watanabe®, Shigeo Takahashi’ and

Issei Fujishiro?*

! Hiroshima Astrophysical Science Center, Hiroshima University, Kagamiyama 1-3-1,
Higashi-Hiroshima 739-8526, Japan

2 The Institute of Statistical Mathematics and CREST, JST, Tachikawa 190-8562, Japan

3 Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho Sakyo-ku, Kyoto
606-8502, Japan

4 Department of Information and Computer Science, Keio University 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan

5 Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho Toyohashi 441-8580,
Japan

6 Department of Computer Science and Engineering, University of Aizu, Tsuruga, Ikki-machi,
Aizu-Wakamatsu 965-8580, Japan

E-mail: uemuram@hiroshima-u.ac.jp

Abstract. Type la supernovae (SNIa) have an almost uniform peak luminosity, so that they
are used as “standard candle” to estimate distances to galaxies in cosmology. In this article,
we introduce our two recent works on SNIa based on data-driven approach. The diversity in
the peak luminosity of SNIa can be reduced by corrections in several variables. The color and
decay rate have been used as the explanatory variables of the peak luminosity in past studies.
However, it is proposed that their spectral data could give a better model of the peak luminosity.
We use cross-validation in order to control the generalization error and a LASSO-type estimator
in order to choose the set of variables. Using 78 samples and 276 candidates of variables, we
confirm that the peak luminosity depends on the color and decay rate. Our analysis does not
support adding any other variables in order to have a better generalization error. On the other
hand, this analysis is based on the assumption that SNIa originate in a single population, while
it is not trivial. Indeed, several sub-types possibly having different nature have been proposed.
We used a visual analytics tool for the asymmetric biclustering method to find both a good set
of variables and samples at the same time. Using 14 variables and 132 samples, we found that
SNIa can be divided into two categories by the expansion velocity of ejecta. Those examples
demonstrate that the data-driven approach is useful for high-dimensional large-volume data
which becomes common in modern astronomy.

1. Introduction

Type Ia supernovae (SNIa) are thermonuclear explosions that occur when an accreting white
dwarf reaches its critical mass, and starts a runaway reaction. The critical mass, so-called the
“Chandrasekhar mass”, is about 1.38 times the mass of the sun (Mg). The presence of this
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critical mass makes the luminosity of SNIa uniform. Then, the apparent magnitude of SNIa
measured on the earth is a function of the distance to the object. Hence, SNIa have been used
as a “standard candle” which enables us to measure the distance of galaxies in cosmology. The
accelerating expansion of the Universe was discovered based on the distance estimation using
SNIa [1, 2, 3]. In recent years, the amount of the SNIa data has rapidly been increasing owing
to large survey projects [4, 5]. When the data set was small, it can be handled based on the
experience of domain experts. However, the numbers of both samples and variables are large
nowadays, so that the data-driven approach is expected to be useful. Here, we introduce two
issues of SNIa, that is, the variable selection of the peak magnitude and the classification of
SNIa.

The observed peak magnitude of SNIa (M) has a small, but significant diversity. It is due to
the interstellar extinction, and hence calibrated by their reddened color. In addition, it is well
known that M depends on the decay rate [6]. The corrected magnitude, My, is expressed as:

M = My + Bic+ Bax, (1)

where ¢ and = denote the color and decay rate, and /31 2 are their coefficients. Both c and x are
values obtained by photometric observations with broad-band filters. The photometric data is
more readily obtained compared with spectroscopic ones because the fluxes are integrated over
the transmission curve of the broad-band filter in photometric observations. Recent survey
projects provide large and uniform spectroscopic data. Using those spectra, a new set of
explanatory variables of M has been searched [7, 8, 9]. However, the number of the candidates
of explanatory variables, that is, all data points in spectra, is larger than the number of sample
in those studies. We need to select the best set of variables for a given data set of M, although
the standard least-square method cannot solve this problem.

The other example is about the classification of SNIa. Several sub-types have been proposed
for SNTa based on observed features. The classification of SNTa is crucial for cosmology, because
some sub-types possibly have different peak magnitudes or colors. For example, Wang, et al.
2009 classified SNIa using the expansion velocity which is measured from the absorption line of
SilII 6355A [10]. They proposed that SNIa having high expansion velocities form a distinct sub-
type which has an intrinsically red color, and appropriate color corrections improve the distance
estimation. Now, we can revisit past classifications using large data of samples and variables. A
problem is that it is difficult to see the structure in the data in the case that the dimension of
the data is high. We need to find both a good set of variables and sub-types at the same time.

In this article, we review our recent works related to the above two problems. Uemura, et al.
2015 use a variable selection approach for modeling the peak magnitude of SNIa [11]. We use
cross-validation to control the generalization error and a LASSO-type estimator to choose the
set of variables (section 3). In section 4, we present a visual analytics approach for clustering
SNIa. This visual analytics tool is based on asymmetric biclustering method, and enable us to
visually check the result of clustering to find the potential structures in the data.

2. Data

All data of SNIa was obtained from the supernova database operated by the UC Berkeley group!
[5]. They present both photometric (the peak magnitude, color, decay rate, and distance) and
spectroscopic data. We show an example of spectra in figure 1. The spectra of SNla are
characterized by broad absorption-lines, for example, of Si, Ca, and S. The right panel shows
the spectra around Si11 5982 and 6355A. We also show the definitions of some astronomical
values related to the lines.

! http://heracles.astro.berkeley.edu/sndb/



International Meeting on High-Dimensional Data-Driven Science (HD?-2015) IOP Publishing
Journal of Physics: Conference Series 699 (2016) 012009 doi:10.1088/1742-6596/699/1/012009

s SIBEW (strength)
W,
| Si6A (depth)
T
) MNJ
x x
E : |
Si5972 (width)
N L
o
Si6V (velocity)
S+ Si6355
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 635.5nm (rest frame)
400 500 600 700 800 560 580 600 620 640
Wavelength (nm) Wavelength (nm)

Figure 1. Left panel: Typical spectra of Type Ia supernovae (SNIa) between 350 and 850 nm. Right panel:
Close-up view of the spectra around two silicon lines, Si11 5982 and 6355A. Some definitions of astronomical values
are also indicated. The data is from the database of the Berkeley group [5].

In section 3, we use the spectra, as well as the photometric data as the candidates of
explanatory variables of the peak magnitude. Among the database, we selected samples having
spectral data between 3500 and 8500Ataken within five days from the maximum. This selection
reduced the number of samples to 78. Each spectrum contains 138 data points. In our sample,
we excluded Type lax supernovae, which have recently been recognized as a peculiar faint class
of SNIa [12]. In section 4, we use the absorption line parameters which are measured from the
spectral data. In conjunction with the photometric data, such as the distance, decay rate, color,
and peak magnitude, we use them as the candidates of variables for classification of SNIa.

3. Variable selection for modeling the peak magnitude of SNIa
In this section, we review our recent work about the variable selection of the peak absolute
magnitude (M) of SNIa [11]. We consider a linear model of M:

M = X8 +e, (2)

where M is a vector containing N samples of the peak absolute magnitude, M. X isa N x L
matrix of the explanatory variables, including a constant term, and 3 is co-efficients. We consider
a Gaussian noise, e. The number of samples, N, is larger than that of the candidate variables,
L if the spectral data are included as the explanatory variables [7, 8, 9]. However, our interest
focuses on a solution having a few variables which control the peak magnitude of SNIa. In
other words, most of elements of 3 should be zero. In order to obtain such a solution, we use a
LASSO-type estimator:

B:argﬁmin{HM—XﬁH%HHﬁHI}, (3)
where A is a tunable constant. Using LASSO, we can obtain a sparse solution, ,é, and choose the

best set of explanatory variables. We use cross-validation in order to control the generalization
error. A 10-fold cross-validation was applied to determine A in the following results.
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Table 1. Coefficients of variables [11].

Coefficients

Variables Model 1 Model 2 Model 3

c 0.376 — —
frot(6373) 0.100 0 0
T —0.060 —0.014 —

fent (6084) —0.034 0 0
fent (6289) —0.045 0 0
fent (6631) —0.061 0 0
R(3780/4580) —0.050 0 0
frot(3752) 0.063 0 0

The candidates of the explanatory variables are the color (¢), decay rate (x), six flux ratios
that were previously proposed (R(A1/A2)), and spectral data. About the spectral data, we used
two kinds of normalized spectra instead of the arbitrary flux ratios that were used in the previous
studies. First, the variables of most interest are the flux ratios of the line areas to the continuum
level. It can be obtained by the spectra normalized by the continuum level (fent(\)). Second,
the local colors in the continuum which may have information independent of the broadband
colors (c) are also variables of interest. They can be obtained by the spectra normalized by the
total flux between 3500 and 8500A( fiot())). Each spectra was re-binned into 134 wavelength
bins between 3500 and 85004, as in the past studies [9]. The number of all candidate variables
is L = 276. The number of sample is N = 78. Each variable was normalized to have zero mean
and unit variance by a linear scaling.

We start the model with all candidate variables (Model 1). Table 1 shows the selected
variables having non-zero coefficients. As proposed in many past studies, the color, ¢, and
decay rate, x have non-zero coefficients. fio1(6373) denotes the flux at 6373A of the total
flux normalized spectra, having a relatively large coefficient. This variable represent a local
continuum color at 6373A, and could be interesting if it has information independent of the
broad-band color, ¢. The other non-zero elements are related to the absorption lines: feu(6084)
and fent(6289),the fluxes at 6084 and 6289A of the continuum normalized spectra, are related
to the absorption line, Si1r 6355A. R(3780/4580), a flux ratio between 3780 and 4580A, and
ftot(3752) are related to Call. fen(6631) can be considered as a noise because it is a continuum
flux of continuum normalized spectra.

The local color, fi0t(6373), is potentially interesting, while its non-zero coefficients could be
due to a high correlation between ¢ and fi0(6373). To evaluate it, we used a new model in which
M is corrected for the effect of ¢ (Model 2). As a result, no variable was selected, except for the
decay rate, z. The result was confirmed another model in which M is corrected for the effect of
c and x (Model 3). No variable has non-zero coefficient in this model. This result suggests that
ftot(6373) and the other spectroscopic variables were selected in the first model simply because
of their high correlations with ¢ or . Our analysis confirmed the past understanding about
SNIa, that is, the peak absolute magnitude depends on the color and decay rate, and does not
support adding any other variables in order to have a better generalization error.

In recent studies, arbitrary flux ratios were taken into account as the candidates of the
explanatory variables of the peak magnitude [7, 8, 9]. Each spectra contains 138 data points,
and the number of the flux combination is 138 x 137 = 18906, which is over two orders of
magnitude larger than the number of samples. The results of those studies are not completely
consistent. Our approach has two advantages against those past studies. First, we reduced the



International Meeting on High-Dimensional Data-Driven Science (HD?-2015) IOP Publishing
Journal of Physics: Conference Series 699 (2016) 012009 doi:10.1088/1742-6596/699/1/012009

Table 2. Variables used in the ABC analysis

Variable Definition

Si6EW Equivalent width of Si6355.

Si6DEW Corrected SI6BEW for the observation epoch.
Si6V Velocity of Si6355.

Si6A Depth of Si6355.

Si6FWHM  Full-width of half maximum of Si6355.
Si5bEW Equivalent width of Si5972.

Si5sDEW Corrected SI5EW for the observation epoch.

z Redshift, corresponding to the distance to the object.

X Decay rate.

c Color.

mB Apparent magnitude.

MB Absolute magnitude calculated from z and mB.

MBc Color (c) corrected absolute magnitude.

MBcx Color (c) and decay-rate (x) corrected absolute magnitude.

number of candidate variables by using normalized spectra, instead of the arbitrary flux ratios.
The reduction of the candidate variables leads to the reduction of false positive signals. Second,
this data-driven approach enable us to determine the number of explanatory variables from the
data itself. In past studies, only one or two variables were evaluated. In our study, we conclude
that no spectroscopic variable can provide a better model for M. Of course, our conclusion is
based on our samples. A better model could be found by using further larger data sets in future.

4. Classification of SNIa via visual analytics for asymmetric biclustering

In the last section, we developed a model of the peak magnitude of SNIa. This modeling was
based on the assumption that our samples of SNIa have the common peak magnitude, while it
is not trivial as introduced in section 1. A search for possible sub-types of SNIa and the axes
for their classification is crucial not only for the cosmology, but also for the understanding their
explosion mechanism. In this section, we present our analysis of SNIa using a visual analytics
tool for this classification problem.

We use the Asymmetric Bi-Clustering (abbreviated as ABC hereafter) tool for our analysis
[13]. This tool has recently been developed for an asymmetric biclustering-based subspace search
of multivariate data. Highly correlated dimensions are automatically grouped to form feature
subspaces in an interactive and progressive manner. The asymmetric biclustering combines
spherical k-means for grouping highly correlated dimensions, together with ordinary k-means
for identifying subsets of data samples. Lower dimensional representations of data in feature
subspaces are successfully visualized by parallel coordinate plot (PCP).

Using the ABC tool, we analyzed 132 SNIa samples from the Berkeley database and 14
variables, which are summarized in table 2. The definitions of the equivalent width (EW),
velocity (V), depth (A), and full-width of half maximum (FWHM) of lines are depicted in
figure 1. We show an example set of the analysis process step by step. Figure 2 shows the initial
state. The 132 samples are plotted in 14 parallel coordinates. Figure 3 shows the results of
biclustering for 6 data and 6 axis clusters. In the upper panel, axes having high correlation are
clustered, and the sample clusters are expressed by colors. The block matrix diagram shown
in the lower panel indicates block errors of each axis and sample cluster. We can see that a
small, blue-colored cluster has a large block error in the axis cluster of x and MBcx, as shown in
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Figure 2. Initial state of the target SNIa dataset of 132 samples in 14 variables.

the lower panel. These are outliers which appears due to their peculiar variation pattern. We
excluded them in the ABC tool, and then obtained a new result shown in figure 4. We found
the axis cluster {MBc, MBcx} has large block errors in several sample clusters. Both of these
variables are the absolute magnitudes, that is, the intrinsic luminosity of SNIa. It is well known
that MBc correlates with x [6]. MBcx is the corrected value of MBc for this effect. Clustering
those two variables can be understood because, in our data, the trend in MBc against x is small
compared with the dispersion in MBc. Judging from the large block errors, we eliminated this
axis cluster.

After further eliminating axes or axis clusters which have large block errors, we obtain three
axis and three sample clusters, as shown in figure 5. We consider this state as the final result
because the total error, which is indicated at the right-bottom area in figures 3-5, reaches its
minimum at this state. We note that the order of the process can change run by run because
it uses random values to set the initial cluster number for each sample. We have confirmed
that most trials converge to the result shown in figure 5. In figure 5, we show the results in
contracted PCP with both polylines (upper panels) and strip rendering (lower panels). We can
see three axis and three sample clusters. The axis clusters are about the expansion velocity of
Si1n 6355A (the left axis), the strength of Si1r 6355 (middle), and 5972A (right). We found that
the objects having high velocity, forming a cyan-colored cluster, have strong Si11 6355 and weak
Sitr 5972, while the low velocity clusters, indicated by blue and magenta, exhibits weak, but
positive correlation between Si1r 6355 and 5972A.

The two axes, Sill 6355 and 5972A have been used for the classification of SNTa [14]. This
classification scheme was proposed by a clustering analysis of spectra, and divided SNIa into
four sub-types: “Normal”, “Broad line”, “Shallow silicon”, and “Cool” types. The expansion
velocity of Si1r 6355A has been used for the definition of the high velocity group of SNIa, which
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Figure 3. Biclustering 14 axis and 132 samples to 6 axis and 6 sample clusters. Upper panel: Clustered PCP.
Lower panel: Block matrix diagram.
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is proposed to have a different color behavior [10]. Our analysis also suggests the presence of a
high velocity cluster. Furthermore, its behavior of the line strengths corresponds to the “Broad
line” type in the Sinr 6355—5972A classification scheme. The axis of the peak magnitude was
eliminated because of large errors in our analysis process. This indicates that the diversity of
the peak magnitude is not significant between each sample classes in our analysis. Thus, our
result obtained by data-driven approach is successfully consistent with those previously proposed
classifications based on the experience of domain experts.

Our study demonstrates that the asymmetric biclustering tool is useful to find a meaningful
classification scheme hidden in high-dimensional data. A potential problem of this tool is the
ambiguity of the number of clusters. As mentioned above, we selected it based on the total
error, while it may be determined by more proper model selection criteria. The revised version
of this tool could overcome this difficulty [15].

5. Summary

In this article, we introduced our study on SNIa using data-driven approach. The LASSO-type
estimator enables us to determine the number of variables and select their best set. Our analysis
confirmed the classical picture, that is, the model with the color and decay rate (section 3).
The ABC tool is useful to find hidden structures in multivariate data. Using this tool, we
revisit the classification of SNIa. The result is consistent with those proposed based on the
experience of domain experts (section 4). Owing to recent survey projects, we can access large
uniform datasets of SNIa. However, old-style analysis might overlook intriguing features in such
high-dimensional large dataset. The two examples shown in this article demonstrate that the
data-driven approach is useful for modern astronomy.
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