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Abstract. As a probability distribution on the high-dimensional sphere, the von Mises-Fisher
(vMF) distribution is widely used for directional statistics and data analysis methods based on
correlation. We consider a constrained vMF distribution for block modeling, which provides a
probabilistic model of an asymmetric biclustering method that uses correlation as the similarity
measure of data features. We derive the variational Bayesian inference algorithm for the mixture
of the constrained vMF distributions. It is applied to a multivariate data visualization method
implemented with enhanced parallel coordinate plots.

1. Introduction

Finding correlated subspaces, sets of features, is one of promising approaches to understanding
high-dimensional data. Visual analysis methods for such a purpose have been developed in the
visualization community [1, 2]. Although these methods are effective, the results of the analysis
depend heavily on knowledge and observation skill of the users and thus may fail to illuminate
important subspaces. To support such data exploration, we developed a multivariate data
visualization method, which combines a biclustering technique and parallel coordinate plots [3].
Biclustering, also known as co-clustering or two-mode clustering, performs a simultaneous
clustering of the rows (samples or instances) and columns (features or variables) of a data matrix
consisting of multivariate data samples [4, 5]. Conventional popular models of biclustering are
based on the so-called block models [5]. Although there are extensions of block models using
probabilistic inference [6, 7], they treat the clusterings of rows and columns of the data matrix
basically symmetrically. This is not necessarily appropriate if a block model is combined with
data visualization methods such as parallel coordinate plots, where correlation is considered
as a suitable measure of similarity between features (axes), and is in fact used for reordering
or contracting axes [8, 9]. Therefore, in our previous work [3], we developed an asymmetric
biclustering method, which uses correlation as the similarity measure of features, based on
spherical k-means [10, 11]. However, the proposed asymmetric biclustering method assumes
that the numbers of clusters are predefined both for rows and columns, and the model selection
mechanism has yet to be implemented.
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In this paper, we propose a probabilistic model for the asymmetric biclustering method by the
von Mises-Fisher (vMF) distribution, which is a probability distribution on a high-dimensional
unit sphere. Providing a probabilistic model offers advantages such as dealing with missing data
and automatic control of model’s complexity by Bayesian methods. However, combining the
vMF model with block modeling requires additional constraints on the vMF model that the
elements of its mean direction parameter vector are divided into groups and are common within
each group. Although the maximum likelihood estimation algorithm was derived for the mixture
of (unconstrained) vMF distributions [11] and the variational Bayesian inference algorithms were
derived as a deterministic approximation of Bayesian inference [12, 13], their extensions to the
constrained vMF distributions are not straightforward due to the constraints. Thus in this paper,
we formulate the variational Bayesian inference algorithm for the mixture of the constrained vMF
distributions. Since in a small variance limit of the probabilistic model, the algorithm reduces
to the asymmetric biclustering method proposed in [3], the derived algorithm is its extension
that naturally provides a mechanism for controlling model’s complexity, namely, the numbers of
data sample clusters and data feature clusters. Variational Bayesian inference offers a criterion
for model selection by its objective functional called variational free energy. Furthermore, the
variational Bayesian inference algorithm automatically eliminates redundant clusters inheriting
the nature of Bayesian inference [14]. Although such a Bayesian framework has been proposed
for the usual (symmetric) biclustering model [6], we consider its application to the asymmetric
biclustering model based on the mixture of vMF models. The derived inference algorithm
is incorporated into the visual analysis framework proposed in [3], which is implemented with
enhanced parallel coordinate plots. We demonstrate the model selection ability of the variational
Bayesian inference through its applications to synthetic and real datasets.

2. Constrained von Mises-Fisher model for asymmetric biclustering

2.1. Block model

Suppose we are given an n X d data matrix X consisting of n samples and d features. Biclustering
methods based on the block model [4, 5] divide the data matrix into K x L submatrices (blocks),
each of which has the size ny x d; (k=1,--- ,K and [ = 1,---, L), where ny, is the number of
data samples assigned to the kth cluster of samples, and d; is the number of features assigned
to the Ith cluster of dimensions. Hence, > 0 n, = n and 1, d; = d hold.

Let y = {y;}]~, and z = {zj}?zl be latent variables, where y; € {1,2,..., K} indicates the
sample cluster assignment of the ith data sample and z; € {1,2,...,L} indicates the feature
cluster assignment of the jth feature. Then it holds that ny = > | d,, x and d; = Z?Zl Oz 05
where d;,; = 1 if kK = [, and 6, ; = 0 otherwise. The 1-of-K and 1-of-L representations of sample
and feature cluster assignments are given by (dy, 1, , 0y, k) and (32,1, -+, 1) for the ith
sample and jth feature, respectively.

Each block has an associated parameter. Let v, ; € R be the parameter of the £lth block and
v={y, :k=1,.,K,l=1,.. L} Then, the block model estimates y, z and v from the given
data matrix X.

2.2. Constrained von Mises-Fisher model
Normalizing each dimension of the data matrix so that each dimension has average zero and unit
norm, we denote the ijth element of the normalized data matrix by ;; and the jth column vector
by xj = (%15, , Tnj), that is, L 3" | 2;; = 0 and x| = 37, m?j =1hold for j =1, ---,d.
This means that each feature lies on the (n — 1)-dimensional unit sphere, x; € S*~1.

Given the latent variables, we assume the following model on the generation of the data
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matrix X,
d
p(X|v,s,y,2) = [[ penr(x5ls;m8.,), (1)
j=1
where ( )
exp(kx -
PvWmrX|H) = ————F 2
v ( | ) Cnfl(ﬁ) ( )

is the von Mises-Fisher (vMF) distribution for x = (21, ...,7,) € S"~! with the mean direction
parameter p € S"~! and the concentration parameter x > 0. The normalizaton constant is
defined by the function,

= eXp(KX - X_M n K
Cate) = [ explox- s = TSIy (0,

K2

where I, is the modified Bessel function of the first kind of order v.!
For block modeling, we assume that the mean parameter vectors of features in (1) are defined
foril=1,...,L by
l‘l’l = (Vyl,lv ceey Vyn,l)7

where v;,; € R(k = 1,...,K) is the mean parameter of the klth block. This means that the
elements of the mean parameter vector p; are constrained to have common values if the cluster
assignments of data samples are the same.

Then the constraint of the vMF distribution in (2) entails the constraints,

K

el = > iy =1, (3)
k=1
K

My - 1 = Z?’Lkljhl = O, (4)
k=1

for the block mean parameter v = {Vk7l}£<;L1,l:1'

Additionally, in the model (1), the variable s = {s; € {—1,—{—1}}?21 is introduced to take
into account the sign of correlation between x; and K- That is, the cluster centroid vector of
features K, is positively (negatively, resp.) correlated with the jth feature if s; = +1 (s; = —1,
resp.).

Hence, given the data matrix X, we estimate latent variables y, z and s, and the block
mean parameters v under the above constraints. Note here that the model (1) assumes the
independence over data features instead of data samples. Probabilistic models with such an
independence assumption have been proposed, for example, in [15] and [16]. In particular,
spectral dimensionality reduction methods such as isomap, locally linear embeddings, and
Laplacian eigenmaps can be interpreted through such probabilistic models [15].

Since the constraints (3) and (4) depend on the latent variable y through {ns}, we express
the block mean parameter vy as?

&kl
n Ry’
! The usual vMF distribution on the (n — 1)-dimensional sphere has the normalization constant C,(x) whereas
in (2), we have Cy,_1(x) because of the additional constraint, x -1 = -7 | «; = 0, which implies that x lies on
(n — 2)-dimensional unit sphere.
21t ne =0, let v =&k, = 0.

Vgl = for gk’l S R,
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where

If ¢ = {fk’,l}iifil:l satisfies Zle &,y =0for I =1,---, L then the constraints (3) and (4) are
satisfied. Hence, we consider £ as a parameter instead of v henceforth, and express the model
(1) as p(X[€;s,y, 2).

2.8. The overall generative model
As in the usual probabilistic models for biclustering [6], we assume the following categorical
models for latent variables,

=

n

peasylp) = [Tew =TT " (5)

i=1 i=1k=1

d
pcat(z|7r) = Hﬂ'zj H (6)

HE&&

where p = {px}5_, and = = {m}£, are mixing proportions satisfying px > 0 (k = 1,..., K) and
Zszl pr=1,and m; >0 (Il =1,...,L) and Zlel m = 1.

Thus the overall generative model of the data matrix X is given by marginalizing out the
latent variables,

p(Xlg,s,p,m) = Y Y p(X,y,zl¢s,p,7)
z y
= > pour(XIE, 8.y, 2)peat (¥19)Peat (2] 7),

z y

where » . and >, denote the summations over all possible configurations of latent variables y
and z, respectively.

3. Inference and parameter estimation

In this section, we formulate Bayesian inference for the biclustering model in the previous section.
We assume the Dirichlet distributions as prior distributions for the mixing proportions of the
data sample and feature clusters, respectively,

K
poie(e) = pamy L1 (7)

e
L
poir(m) = lliigf)) Hﬂlﬁ_l, (8)

where a > 0 and § > 0 are hyperparameters, and I'(z) = fooo t*~le~tdt is the gamma function.
The posterior distribution of the latent variables conditioned on the data matrix, &, and s is

p(y,z]X,E,s) = /p(y,z,p,w[X,ﬁ,s)dpdTr,

where p(Yv z, p, ﬂ-’X7 £a S) = p(Xv Yy, Z|£7 S, P, ﬂ-)ler(p)ler(ﬂ-)/p(X|£7 S)v which is intractable
because the likelihood function p(X[£,s) requires the summations » , and »_, of K™ and L

terms, respectively.
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3.1. Variational Bayesian inference
To obtain a tractable upper bound for the negative log-likelihood, — log p(X|€,s), we introduce
an approximating posterior ¢(y, z, p, ), that factorizes as

q(y,z,p,m) = q(y)a(z)a(p)q(m),

where the distribution ¢(y) further factorizes as ¢(y) = [[\; ¢(vi). Then we obtain an upper
bound for F(€,s) = —log p(X|&,s) as follows,

F(,s) < F(&s)+KL[g(y,z p,m)||p(y, 21X, &,3)] 9)

_ q(y.z,p, ) = ; o) £ s
- (oo ares). . =T aeam.es 10

where KL[g|[p] denotes the Kullback information from ¢ to p, and (-), the expectation with
respect to ¢. The inequality (9) follows from the non-negativity of the Kullback information or
equivalently from Jensen’s inequality. The upper bound F, called the variational free energy, is
minimized alternately with respect to one of ¢(y), ¢(z), ¢(p), q(7), &, and s while the others are
fixed. The variational free energy provides an estimate of model’s negative log-likelihood. It is
used as a model selection criterion by choosing the numbers of clusters, K and L, that minimize
the variational free energy among candidate models.

Variational posteriors of mizing proportions: Minimizing F with respect to ¢(p) and ¢(7) while
the other variational posteriors and parameters fixed, we have

a(p) ox exp <10g(pcat(y‘p)pDir(p)»q(y) )

and
q(m) o< exp (log(Peat (2| ™) PDir (7)) 4z -

It follows from (5), (7), (6), and (8) that

K

H T +a— 1 (11)

L

H di+B8— 1 (12)

=1

This means that q(p) and q(m) are the Dirichlet distributions with hyperparameters {7 + a}
and {d; + B}, respectively, where

n

e = (k) = ZQ(% =k), (13)
i=1
d

El = <dl>q(z) = ZQ(ZJ' = l)v (14)

are the expected number of data samples assigned to the kth sample cluster and that of data
features assigned to the Ith feature cluster, respectively.
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Variational posterior of feature cluster assignments and sign of correlation: As a function of
only ¢(z), F' is minimized when

q(z) o exp (log(pynir (X2, Y, §)Pcat (2[7))) 4 (y)4(r) -

Combined with (2), (6) and (12), this yields that

d
= q(z),
j=1
and ' B
a(zj = 1) o< exp (s +W(di + 8) — W(d + LB)) (15)
where ¥(x) = dlogI'(x)/dx is the digamma function, nl(j ) = Xj - [y, By is the n-dimensional

vector whose ith element is 7,,;, which can be interpreted as the expected cluster centroid
vector of the [th feature cluster, and

Uy = (16)

(17)

Here, we have used the approximation that the expectation of 1v; with respect to ¢(y) is
computed by the expectation of ng. Since F' depends on the sign s; through —s; Zlel q(z; =
l)nl(i), we compute it for the two candidates of ¢(z;) with s; = +1 and —1, and adopt s; and
q(z;j) yielding smaller F'.

Variational posterior of sample cluster assignments: Similarly, F as a function of q(y;) is
minimized by
Q(yl) X exp <10g(pVMF(X’Z7y7 €)pcat (y‘p))>q(yﬁi)q(z)q(p) y

where q(y ™) = [ 12 a(yir). This yields that

q(y; = k) o< exp (/ﬂ,ii) + ¥ (g +a) —¥(n+ Ka)) , (18)

where
' d L - L -
71(;) — Z S$;Tij <Z q(z; =1) <1/’(€?;_ > . >+Z Z Z 55T (Zq < (yjl— )>q(yﬁi)> 7
j=1 =1 '#i k'=1j=1 =1 (19)
(yi=k) _ €k 1
<”’“ >q(yﬂ‘> B (n;; O Rly’ ")’
H(yi=k) _
R B 7ﬁl + 5m k
and @' = Z yir = k) =ng — q(y; = k).
i £
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Note that the computation of ’y,(:) for each i requires the complexity of O(n). If we approximate

it by ignoring the dependency of vy on y, 'y,(:) in (19) is replaced by

S o ]2
. % —m
o = T (20)
where X; is the ¢th row vector of the data matrix and my, is the d-dimensional vector consisting
of s; <1/k7zj>q(z), which can be interpreted as the expected cluster centroid vector of the kth
J

sample cluster.

Parameter estimation: The variational free energy depends on the block mean parameter &

through
n L

d K
—k Y Y>> alz = Dalyi = k) Wk gy 55

j=1i=1 I=1 k=1
if we approximate the expectation with respect to ¢(y) by separately applying it for d,,  and vy ;.
If <Vk7l>q(y) in the above sum is further approximated by (16), the Cauchy-Schwarz inequality

implies that F is minimized by

n

=Y > alz = Daly: = k)sjaij, (21)

j=1i=1

up to multiplication of a constant independent of k. o
The update rule of the concentration parameter « is obtained by differentiating F' with respect
to k and equating it to zero, which, combined with (17) and (21), yields,

O (k) Ina(k) 1 S
A9 = 5= = Losy(r) d;R"

We use the method proposed in [17] to solve this equation for k. Moreover, if we introduce a
separate concentration parameter k; to the Ith feature cluster, the above equation is replaced
by

Ry
An-1(k1) 7
forl=1,...,L.
The hyperparameters « and 8 of the Dirichlet priors can also be estimated by using the
Newton-Raphson updates as shown in [6].
In the limit, k — oo, the probabilistic (soft) cluster assignments given in (15) and (18) become
deterministic (hard), and the algorithm reduces to the asymmetric biclustering method proposed

in [3], which maximizes the objective function, Z?Zl $jX;j My, Where py = (Vy, 1, .o Vy,, 1)

4. Experiments

In this section, we present experimental results of the proposed approach with synthetic and
real-world datasets. We used the hyperparameters « = § = 1 so that the prior distributions
(7) and (8) are uniform. We ran five trials of the variational Bayesian algorithm and took the
result with the smallest variational free energy. We observed that the variational free energy
monotonically decreases in spite of the approximations introduced in Section 3.1 except for the
rough approximation given by (20), which we did not use in the experiments below.
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4.1. IRIS data

As a low-dimensional real dataset for demonstration, we applied the variational Bayesian
inference algorithm to the Iris dataset, which has often been used in pattern recognition [18].
The data matrix consists of 150(= n) samples and 4(= d) features. We observed that
the concentration parameter grows unboundedly, if we estimate it for fixed K and L that
we considered. Although this means that the deterministic (non-probabilistic) asymmetric
biclustering is favored, the model selection mechanism is lost in this limit, while if we set
L = 4, one of the feature clusters is automatically eliminated during the estimation as is shown
in Figure 1 for a different setting of «.

We fixed « € {100, 150, 200, 250, 300} and examined if the model selection mechanism works.
Fixing L = 4, we compared the variational free energy for K € {3,4,---,8} (Table 1). We
can see that as k grows, the more complex model is favored. This means that x works as
a regularization parameter. If its value is fixed, the numbers of clusters K and L can be
determined by the minimization of the vatiational free energy. In addition, because of the prior
distributions (7) and (8), redundant components are automatically eliminated if 7y, /n or d;/d is
estimated near zero, or two cluster centers are estimated to be overlapping [14]. In fact, for all
the results in Table 1, at least one of the four feature clusters was eliminated and the feature
cluster consisting of the two features, petal length and petal width was obtained as illustrated
in Figure 1 for k = 200 and K = 3 with the clustered parallel coordinate plot proposed in [3],
where sample cluster assignments are indicated by colors of polylines and feature clusters are
divided by thick separators.

Table 1. Variational free energy (negated) for different number K of sample clusters and the
concentration parameter k. The number of sample clusters with the smallest variational free
energy is highlighted for each column.

k=100 | k=150 | k=200 | k=250 | k=300
K =3 | 719.028 | 766.249 | 801.694 | 827.433 | 845.829
K =4 | 717.768 | 764.923 | 800.353 | 831.528 | 853.828
K =5 | 717.887 | 763.457 | 799.726 | 832.243 | 856.360
K= 716.763 | 757.156 | 798.302 | 830.458 | 857.001
K= 715.442 | 755.101 | 796.768 | 829.424 | 853.641
K =8| 714.556 | 755.072 | 795.784 | 828.766 | 852.105

In this example, the growth of k was observed by the minimization of the variational free
energy, which is equivalent to the maximum likelihood estimation of x. A finite x can be
estimated by introducing a prior distribution and incorporating Bayesian inference for it [13].
Also in such Bayesian inference of x, the model selection results by variational free energy
minimization or automatic elimination of redundant components depend on the choice of the
prior distribution of .

4.2. Synthetic data
We demonstrate our experimental study on a 750 records of 12-dimensional synthetic data
employed in [1, 3]. This multivariate data includes four 3-dimensional clusters with 10% noise
and two 6-dimensional clusters without noise, while the data samples are uniformly distributed
in other dimensions.

The estimation of the concentration parameter chose the deterministic biclustering (k — 00)
also for this dataset. Hence, we fixed k € {200, 225, 250, 275,300}, and compared the variational
free energy for K € {3,---,8} and L € {4,---,9}. Table 2 shows the selected pairs of the
numbers of clusters, (K, L), that attained the minimum variational free energy for different .
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Figure 1. Clustered parallel coordinate plot for K = 3 and L = 4.

Table 2. Selected numbers of sample and feature clusters
k=200 | k=225 | k=250 | k=275 | kK =300
(K,L) || (43) | 45 | 6,8 | (5.8 | (6,7)

We see the tendency that the greater & is, the more complex model is selected if the variational
free energy is used as the model selection criterion. Figure 2 (left) shows the variational free
energy for pairs (K, L), with its sign flipped for presentation purpose, when x = 250. Its
minimum is attained at (K = 6,L = 8) and (K = 6,L = 9). The result of biclustering for
K =6 and L = 8 is demonstrated in Figure 2 (right) with the clustered parallel coordinate plot.
Although we set L = 8, one of the feature clusters is eliminated, and there are seven feature
clusters, one cluster with six features and six clusters with each of the other features.

In the clustered parallel coordinate plot (Figure 2 (right)), we can find the three feature
clusters with each of the three uniformly distributed dimensions, which can be detected as less
correlated clusters by looking at the error of each block defined by

1
Mgd)

n d
DD alyi = kalz = 1) (wij — sjvi)?,

i=1 j=1

for the kith block. Feature or sample clusters with high block errors can be considered
mismatched with the block model. The interactive visual data analysis framework developed
in [3] enables to keep such clusters aside and continue the analysis for the remaining data matrix.

4.8. Supernova data
We employed the Berkeley supernova dataset [19] as another real-world example, to which the
deterministic asymmetric biclustering has been applied in a previous work [20]. The dataset
consists of 132 data samples corresponding to supernovae of a subtype, called “Type Ia”, and
14 variables including both photometric and spectroscopic features.

We observed the tendency that if the concentration parameter x is fixed, the more complex
model is favored as x grows also for this dataset. We also found that x does not grow
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Figure 2. Variational free energy (negated) for different numbers of sample and feature clusters (left). Clustered
parallel coordinate plot for K = 6 and L = 8 (right).

unboundedly if it is estimated for moderate numbers of clusters. Thus, we introduced separate
concentration parameters to respective feature clusters and estimated them by the update rule
given in Section 3.1. We set the numbers of clusters to K = L = 6, from which a detailed
interactive analysis of this dataset was conducted in the previous work [20]. Figure 3(left) shows
the result with the contracted parallel coordinate plot where axes of each feature cluster are
contracted to a single axis by the linear discriminant analysis using sample cluster assignments
as class labels [3]. We focus on the feature clusters, {Si6V},{Si6EW, Si6A, SiI6GFWHM}, {SibEW,
Si5DEW, x1, MBc}, which are consistent with the previous analysis except for the fact that
MBec is included in the last cluster. We also observe that the scatter plot between the two
feature clusters, {SIGEW, Si6A, Si6FWHM}, {SisEW, Si5SDEW, x1, MBc} appears similar to
that discussed in the previous work (Figure 3(right)). Additionally, the feature x1 is negatively
correlated with the other three features, SISEW, SiSDEW, MBc, and included in the cluster
with its sign flipped. This suggests that the variables s in the model (1) are also estimated
appropriately.

c .Mch SI5SEW SIGEW SieV z
MB SiSDEW Si6DEW { mB
x1 Si6A
MBc Si6FWHM
Si5SEW
Si5SDEW
x1
MBc

SIBEW
Si6DEW
AT A : Si6A

LT ’ Si6FWHM

Figure 3. Contracted parallel coordinate plot of the supernova dataset (left). Scatter plot of the third and
fourth feature clusters on the left, {SISEW, Si5sDEW, x1, MBc} and {Si6EW, Si6A, SiI6FWHM]} (right).

5. Discussion and conclusion
In this paper, we derived the variational Bayesian inference algorithm for the mixture of the
constrained vMF distributions, which provides a probabilistic model of asymmetric biclustering.
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The derived algorithm was applied to the multivariate data visualization tool with enhanced
parallel coordinate plots. Through numerical experiments, we demonstrated that the Bayesian
formulation offers a selection criterion of the number of feature and sample clusters.

The assumption of the block structure may be too restrictive for some datasets. Our current
framework enables to interactively select clustered rows and columns of the data matrix and set
aside them from the main target of the analysis. It would be important to model more complex
structures directly, such as the nested partitioning proposed for the ordinary biclustering method
in [7].

Another type of parallel coordinate plots chooses the ordering, locations and scales of axes
so that data samples are aligned as horizontally as possible [21]. It is an important undertaking
to explore an extension of our visualization framework in such a direction, in particular, by
incorporating probabilistic cluster assignments of data samples and features.
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