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ABSTRACT

The concept of multilayer networks has become recently integrated
into complex systems modeling since it encapsulates a very general
concept of complex relationships. Biological pathways are an exam-
ple of complex real-world networks, where vertices represent biolog-
ical entities, and edges indicate the underlying connectivity. For this
reason, using multilayer networks to model biological knowledge
allows us to formally cover essential properties and theories in the
field, which also raises challenges in visualization. This is because,
in the early days of pathway visualization research, only restricted
types of graphs, such as simple graphs, clustered graphs, and others
were adopted. In this paper, we revisit a heterogeneous definition of
biological networks and aim to provide an overview to see the gaps
between data modeling and visual representation. The contribution
will, therefore, lie in providing guidelines and challenges of using
multilayer networks as a unified data structure for the biological
pathway visualization.
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1 INTRODUCTION

Over the past decade, several new scenarios from sciences or ev-
eryday life have benefited from formulating a relationship between
entities as a graph. For example, social networks [26], which de-
scribe person-to-person relationships, are developed since 20th cen-
tury. The scientific discipline of complexity science is concerned
with studying huge sets of relationships among entities, to make
sense of the complex interrelationships within a particular structure
or phenomenon. Due to the rapid development of data measure-
ments, simple graph representation is no longer sufficient to capture
areal-world complex system, because the number of nodes grows
prohibitively large, as well as the density of relationships in the
system. Often, fortunately, the phenomenon can be structured along
particular domain semantics that organize the graph into certain
higher level structures. In social networks, for example, these could
relate to geographical location, place of study, work, or hobbies.
Such additional structure, gives rise to the concept of a multilayer
network [21] to generalize the modeling of a complex relationship
through a series of layers.

In addition to social networks, another well-known application
for complexity science is analysis of network structures in biology.
The life functions are prominently organized in a relationship of in-
teracting elements and chemical compounds, forming super complex
networks of reactions carried out all over the entire life form. These
networks are large and heavily interconnected. Biological pathways,
which form a graph containing dozens of chemical elements rep-
resenting a particular element of life, are the simplest relational
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entity of such networks. To semantically manipulate such a net-
work of interconnected pathways, one can segment it into multiple
sub-networks, such as pathways arranged with different function-
alities. Semantics in pathways can be understood in several ways.
One aspect could be the functionalities among the data, and another
aspect could be species associated with the data. According to the
definition by Kiveld et al. [21], the aforementioned aspects can be
formulated as groups of layers of different types.

Unfortunately, the full set of pathways is too large to be easily
handled in high quality with common graph visualization techniques.
Several research studies in visualization tend to solve the problem,
by organizing aspects into clusters, such as subsystems in biological
ontology to reflect the underlying structures in the datasets. The defi-
nition of the multilayer network facilitates us to revisit the modeling
and visualization of biological pathways in a whole. In this paper,
we investigate the underlying graph modeling and visualization of
conventional biological pathways, and further research their com-
mon and different properties due to the heterogeneity in the state of
the art. Our contribution is to provide a summary to show the similar
and dissimilar properties of the underlying graph models used in
both pathway modeling and visualization. This is done by a study on
the collected literature and the classification through types of under-
lying graph data structures not only from the well-known pathway
databases but also the pathway visualization methodologies.

The remainder of this paper is structured as follows: In Section 2,
we define the underlying graph structures often used in modeling
biological pathways. Next, we investigate the visualization of bio-
logical pathway diagrams by researching hand-crafted diagrams and
machine-computed layouts in Section 3. In Section 4, we discuss
and summarize some future research directions and challenges of
pathway visualization, followed by a conclusion in Section 5.

2 UNDERLYING STRUCTURES OF BIOLOGICAL PATHWAYS

A complex phenomenon is often formulated using a graph to manip-
ulate a relationship mathematically.

Definition: A simplest graph model can be described as a tuple G =
(V,E), consisting of a set of vertices V = {vy,vy, ..., v, } representing
individual entities, and the mutual connectivity is represented by
the edges E = {ey,e2,...,em } CV x V. This is a common definition
that allows us to describe the simplest relationship between entities.

The term used for describing more nested relationships between
entities is often called multiplex [3], while other terminologies that
describe similar concept are also used in conventional research. Also
reported by Kivela et al. [21] originally, those terms include multi-
plex, multilevel, multivariate (28], multidimensional, multirelational,
network of networks can be reframed and encapsulated by the defini-
tion of multilayer networks. In other words, one can use multilayer
networks as an umbrella term to cover conventional formulation,
nonetheless to say in the field of biological networks [14].

This concept is not fully captured in the early research of biolog-
ical pathways, in which researchers tend to formulate the network
as straightforward as possible based on their needs. According to
our investigation, the biological relationship is often formulated as
Substrate Graph, Bipartite Graph, Hypergraph, Reaction Graph,
or Stoichiometric Matrix in biological pathways. In this section,



we summarize different graph structures that are frequently used in
modelling biological pathways, and in comparison to the formula-
tion of multilayer networks. This will give readers an overview of
the models and further understand the power of using multilayer net-
work in the future. We have described the simplest graph definition
and will explain how it is expended to model biological pathways.

2.1 Substrate Graph

The development of computational tools in
systems biology allows us to analyze the col- @,
lected datasets through the power of com-
puters [41]. The underlying data structure (") @
is important in the sense that it requires effi-
cient access to the data so that the algorithms © O ©
can perform efficiently. The substrate graph

is one of the pioneering graph structures.

Definition: A substrate graph is essentially equal to the simple
graph introduced previously. Nonetheless, since enzymes binding
with chemical reactants are called substrates (; in the figure), for
each v € V in a substrate graph represent multiple reactants together
with enzymes as a single vertex. For each e € E in a substrate graph
describes a reaction between the substrates.

2.2 K-partite Graph

A K-partite graph is a graph whose vertices
can be partitioned into K different disjoint )

sets. Bipartite graphs are specific types of (R.)
K-partite graphs, where K = 2, and are com- R )
mon representation for biological pathways.
By definition, each vertex in a bipartite graph © O ©
can be either categorized as a metabolite ver-

tex (m;) or a reaction vertex (R;), but not both.

Definition: A graph G is bipartite if and only if there exists a vertex
partition, where for eachv € V,V = P UP, and Py NP, = 0. Each
edge e = (v;,v;) € E,v; € Py and vj € P, so that it is guaranteed that
the end vertices of an edge do not belong to the same vertex set.

2.3 Hypergraph

In principle, a hypergraph is a more intuitive
and direct representation of biological path-
ways. A hyperedge in a hypergraph can refer
to a single reaction, in which participating
metabolites are involved. Although hyper-
graphs can be converted into bipartite graphs,
and vice-versa, due to the difficulty of man-
agement, only a few tools support hypergraph representations [41].
Definition: A hypergraph G = (V,E) includes a set of vertices,
while E is a set of non-empty subsets of V, namely hyperedges.
Formally, E is a subset of P, where P is the power set of V.

The advantage of hypergraph representation is that users can
immediately understand if enzymes are involved in this reaction.
While with the substrate graph representation, it is hard to discrimi-
nate if the metabolite is a metabolite or a specific type of enzymes
accelerating the corresponding reaction.

©
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2.4 Reaction Graph

A reaction graph is also a simple graph struc-
turally, but contains different semantics in
comparison to a substrate graph. Vertices R)

here are distinct reactions, and the edges are (R) ®)
metabolites involved in the network.
Definition: Vertices v € V in a reaction
graph G represent reactions in biological net-
works, edges e € E stand for metabolites involved.

A reaction graph is predominantly used for topological analysis,
such as shortest path analysis or centrality analysis, so that users can
rank graphs according to important concepts in the field [15].

2.5 Clustered Graph

As explained by Kiveld et al. [21], one can
consider multilayer networks as a superset
for complex networks. Clustered graphs is
one of the interesting subsets.

Definition: A clustered graph is a simple
graph G with additional grouping informa-
tion. Each v € V in a clustered graph belong
to one or more clusters ¢ € C = {c1,c¢2,...,ct}. In other words,
clusters can also form a hierarchy using a cluster tree.

In some definitions of clustered graphs, all clusters in C are
disjoint and form a partition of the vertex set V [7]. Nonetheless,
in the context of biological pathways, clusters ¢ are not necessarily
disjoint. For example, ATP, a universal energy molecule occurring in
mitochondria and cytoplasm, is often used to drive several biological
reactions. If we consider these compartments as clusters, they are
overlapping since ATP can be transported from the mitochondria to
the cytoplasm. Another example would be the relationships of ATP
in the biological ontology. Since ATP occurs in many categories of
biochemical reactions, including Citric Acid Cycle and Urea Cycle,
its representation should be covered by multiple clusters in the model.
In some cases, to simplify the visual complexity of clustered graphs,
biologists duplicate unimportant vertices (e.g., vertices with high
degree) to create a specific type of clustered graph, where aliases of
an identical vertex only belong to a corresponding cluster. In other
words, clusters become disjoint in this case.

2.6 Multilayer Graph

A multilayer graph is a simple graph G
with additional layer information to describe m
real-world properties of the network in a ; §
whole. Layers in multilayer networks are & 1 Do
used to describe the corresponding relation- 1 o\o\C>
ships, where each of which records the prop- :
erty of the corresponding relationships. In

this paper, we follow the formal definition by McGee et al. [24].
Definition: Since each v € V can belong to several layers, we can
consider vertices as pairs Vjy CV x L, where L is the set of associated
layers. Edges Ejp C Vi x Vjy indicate the connectivity of pairs
(vi,Ip), (vj,lg). An edge is considered as an intra-layer edge when
I, = I, or an inter-layer edge when /), # [, respectively. In biological
networks, we would have L = {I,l,13,...,1,}, where I; could be
metabolites occurring in mitochondria and /; could be metabolites
existing in cytoplasm, and so on. Note that some metabolites, such
as H,O, which occurs in both mitochondria and cytoplasm, can
be connected using an interlayer edge. This formulation becomes
powerful in the sense that it covers existing concepts and can be
further used as an intermediate form to transform one concept to
another, not only model wise but also visually [13,21].

In practice, we can use multilayer graphs as a unified graph struc-
ture because the graphs described in Sections 2.1-2.5 are specific
subsets of multilayer graphs. Thus, researchers can always convert
the aforementioned graphs to multilayer graphs and again convert to
the target graph data structures. This scheme allows us to perform a
systematically consistent conversion to different graph representa-
tions, as well as using the multilayer graph as a standard diagram
when comparing to other visual representation.

2.7 Stoichiometric Matrix (S Matrix)

Last but not least, in addition to using graphs, the aforementioned
relationship can be modelled using a stoichiometric matrix, namely
S Matrix. With this formulation, researchers can conduct some



stoichiometry-based pathway search methods which operate on the
S matrix.
Definition: In a stoichiometric matrix, each

data element (row) is a metabolite and each my il F:)Z F:;
dimension (column) corresponds to biolog- [ m| 1 -1 o
ical reactions. The value can be positive [ ™| * ¢
or negative, which indicate the stoichiomet- [ m;| o 1 o
ric consumption of reactants and products, [ ML 0 0 1

respectively. Unlike a directed graph repre-

sentation that inherits the reversibility information of a reaction, this
concept needs to be defined along with additional constraints, for the
Stoichiometric Matrix representations [41]. Graphs and Matrices are
sibling representations of relationship models. Each of which has
advantages and disadvantages, and can be inter-converted as well.

3 BIOLOGICAL PATHWAY VISUALIZATION

The purpose of developing pathway visualization is to convey the
underlying knowledge of the data models to the users effectively.
Ideally, the visualization is expected to reflect this information intu-
itively. Unfortunately, pathway visualization is still a challenging
problem due to the size and the complexity of biological models.
Moreover, the heterogeneity of biological networks makes the prob-
lem even worse, since it becomes difficult to develop a unified
framework that supports various types of information. In this sec-
tion, we aim to summarize the existing visualization techniques in
comparison to the models described in the previous section. The
focus includes both the overview diagram from the public biological
databases and the machine-generated pathway diagrams.

3.1 Diagrams from Biological Databases

Biological databases enable researchers to store, analyze, and share
biological information systematically [33,43]. Metabolic pathway
and protein function databases often give an overview map [29] to
firstly demonstrate the high-level structures of the organized biologi-
cal information. BioCyc Database Collection is a Pathway/Genome
Database, which collects metabolic and genome pathways of or-
ganisms. Its overview diagram, Pathway Collage [31], contains
user-specified pathways for an organism and can be arranged and
customized on their user interfaces. This is a semi-automatic ap-
proach [18], where smaller graphs are automatically computed [19],
followed by a manual arrangement to avoid overlaps [31]. Ver-
tices here are small-molecule metabolites or proteins, and edges
biochemical or transport reactions. The underlying graph here is a
multi-faceted clustered graph.

BRENDA [4] is an information system, which allows the users to
search, filter, and retrieve enzyme functions and where a molecule is
involved in the enzyme functions. Since 2017, the team introduced
an overview map of the metabolic pathways, to visualize the enzyme
and ligand information. The map has been created manually drawn
using the network editor Cytoscape [35], in order to create a map
which is familiar to biochemists and similar to the maps in biological
textbooks. The visualization is in a top-down fashion, where they
show the category (approx. seven categories) using color boxes,
and expanding the detailed pathways when clicking on the boxes.
The current map contains ligand and enzyme as vertices and edges
as reactions; therefore, it is a combination of clustered graph and
bipartite graph representations.

HMDB [42] contains detailed information about small molecule
metabolites found in the human body. The visualization suite, SM-
PDB [8], provides an interactive interface to small human metabolic
pathways, but the team did not integrate them into an overview map.
The pathways in the database are hand-drawn pathways specific
to humans. A vertex can be a metabolite or enzyme, and edges
are reactions in the biological processes. The difference here is
that the designer added background icons such as mitochondria or

endoplasmic reticulum, to describe the spatial location of the reac-
tions in the physical world. The visualization uses a bipartite graph
representation with annotated image labels.

KEGG PATHWAY Database [17] collects manual-drawn pathway
maps, which represent our knowledge on the molecular reactions.
The vertices in the overview map are metabolites and edges are
reactions, while the involved enzymes are integrated in a singe edge
representation. The diagram is clean with only category information.
The users need to click on a vertex or an edge to explore further
details due to the complexity of the diagram. This overview diagram
is a combination of clustered graph representation together with a
user interface. MANET database [20] is a database that allows users
to trace the evolution of protein architecture in biomolecular net-
works. The interface supports scripts, query, and statistical analysis.
The researchers utilize the pathway maps created from the KEGG
database [17], and thus do not have their own specification.

Reactome [36] is the pioneering database, which incorporates
fully automatic layout algorithms to assist navigation of human
metabolic pathways. The system first provides a hierarchical visu-
alization to show the relationship of biological pathway categories.
Once the user selects a category, the system will zoom in and show a
detailed pathway diagram. The collection of pathways is organized
to show the relationship of pathway categories, then the detailed
pathways, unlike the other databases, which tend to create a big
overview map based on species. Vertices represent the participants
of reactions, which are categorized into ten types, including complex,
protein, and RNA. Edges in the pathway diagrams are reactions. The
database uses a hypergraph representation for the information.

ReconMap [29] is developed based on the genome-scale recon-
struction of human metabolism, and provides an interface to access
its content and associated omics data and simulation results. It is
known as the largest hand-crafted human metabolic pathway map
that facilitates an overview of the major biological processes in the
human body. The vertices in the diagram are metabolites which are
categorized based on their semantics, and edges represent biological
processes. This overview diagram is arranged in a way that reactions
happen in the same compartment in a cell are strictly placed within
a certain representative region. To achieve this, some high-degree
vertices are duplicated. This diagram is a combination of a clustered
graph with disjoint clusters and a hypergraph representation.

WikiPathways [37] is another collection of knowledge concerning
biological pathways. Similar to HMDB, WikiPathways collects
many promising pathway information but does not visually integrate
them. Vertices here are metabolites and edges are reactions. The
diagrams are using hypergraph representation.

Other well-known pathway diagrams (which are not databases)
such as Roche Biochemical Pathways [25], even embed chemical
structures to guarantee the high quality of the pathway map. The
diagram is considered as a hypergraph representation with large
number of vertex annotations.

3.2 Software-Assisted Pathway Diagrams

Since new biological pathways are unceasingly introduced and added
to pathway databases, pathway visualization has developed a series
of variations to support pathway analysis. Recently, Murray et
al. [27] proposed a visualization task taxonomy for the analysis of
biological pathway data. They summarize that relationship tasks are
considered as the most common and essential tasks in their investi-
gation, while they also point out that existing network visualization
tools are not that fully suitable for biological pathways due to their
limited capability [30,39]. The more constraints added to the layout,
the higher running time is needed. Since the layout problem is still
resource-consuming, most of the techniques can handle graphs with
up to 500 vertices.

For this reason, pathway visualization is commonly categorized
into two types, which are an interactive exploration scheme on a



static map, and a fully automatic layout approach. For the first case,
the static map must be created in advance. Scientists need to either
use pathway editors, such as CellDesigner [9], SBGN-ED [22], or
Newt [34] to create the pathway diagrams, or adopt conventional
network analysis tools, such as Gephi [1] and Cytoscape [35] to
apply standard layout approaches. While the maps are often of
better visual quality, creating static maps often requires a lengthy
trial and error process, until the design is finally satisfactory. With
a nice hand-crafted map, biologists can rely on powerful user inter-
actions with the maps to support a comprehensive understanding
of the datasets. For example, basic interactions such as semantic
zooming [10] and visual aggregation [5, 6] have been investigated
to analyze large networks. Note that interaction has been proved
useful for large network visualization, but it may also generate extra
overhead for doing simple connectivity tasks [45]. Nevertheless,
interaction provides us an alternative to expand and collapse the
visualization in order to navigate and access our target of interests.

On the other hand, the second type requires sophisticated layout
algorithms by introducing several pathway-specific constraints. Sev-
eral research works focus on the visually pleasing and well readable
layout of small biological networks. Gerasch et al. rebuild small
KEGG pathway maps [12] by removing unnecessary elements in
the diagram, to conserve the original KEGG layout. The approach is
built on top of hierarchical sub-networks to support user interaction.
Jenson and Papi present MetDraw, an approach that generates path-
way diagrams using a familiar graph library GraphViz, together with
overlaying omics data [16]. Li and Kurata formulate the pathway
diagram using an annealing procedure [23].

The idea is to arrange vertices on a 2D square grid to exhibit clus-
ter information and produce a compact diagram. Bachmaier et al. [2]
also summarize several pathway layout approaches extended from
the well-known force-directed technique. Wu et al. [44] introduced
anew design for biological pathways, where an urban map metaphor
is used to maintain the readability of low-level and high-level re-
lationship for larger networks, such as human metabolic pathways.
Several pathway visualization toolkits are also investigated in the
state-of-the-art literature [2, 11,32,38]. Most automatic layout ap-
proaches rely on constrained layout techniques, which often assume
the input graph is simple and thus restricts the visual representation
of biological pathways. Since the multilayer network concept is
considered as a framework for the graph formulation of a complex
system, it thus can serve as an intermediate structure to convert
between different graph models and visualizations.

4 FUTURE CHALLENGES OF PATHWAY VISUALIZATION

After investigating the commonly used pathway databases, we sum-
marize the challenges as follows:

Structural Motifs: Structural network motifs are simplified and
representative patterns that show the most common structures in the
biological networks. Besides, the motifs that abstract the shapes of
metabolites can provide insight during simulation and analysis [25].
One interesting aspect of these motifs is that they provide a visual
summary for the structures so that the visualization is clean and
readers can intuitively understand the knowledge behind it [40].
Technically, this introduces another challenge since the screen space
reserved for the motifs should be balanced with the network layout,
which implies a difficult layout challenge for multilayer networks.
Global vs. Local Relationship for Biological Tasks: As reported
by Murray et al. [27], detailed relationship information, as well as
the corresponding aspects, are expected to be clearly presented for
analysis or educational purposes in a pathway visualization. This
implies that any well-organized layer structures should be compati-
ble with the high-level and detailed-level connectivity of biological
pathways. Aside from pathway modeling, a visual hierarchy in multi-
layer networks should be explicitly developed in order to maximally
reduce the cognitive work load of the visualization users.

Scalability and Interactivity: Scalability and interactivity are key
factors for all of the visualization techniques. This is especially
significant for pathway analysis because the new findings impact the
field frequently. A typical example is the study of glucose, which
was considered as a fast supply of energy initially but later on is
also found to have a strong activation of cancer metabolism. This
changes the topology of the graph along time. We, therefore, have a
strong need for dynamic layout approaches, and this must be applied
to large graphs since there are thousands of metabolites and reactions
in human metabolism.

Application-Oriented Approach: In the past decades, scientists of-
ten appreciate more general visualization techniques for networks so
that they can be easily applied to different research fields. Nonethe-
less, since the field in biology is becoming more and more complex,
and several properties in the domain may not exist in other domains,
a domain-specific approach is required. This is because a general
approach is not specialized enough to support the regular analysis,
which also generates a lot of overhead for domain scientists.
Dynamics and Time-dependency: Time is another important fac-
tor. How to incorporate time as an axis in multilayer networks is
still an open research question because it adds another complexity
in both modeling and visualization.

Uncertainty: The current biological network is deterministic based
on experiment settings. However, in the real-world case, some
pathway interactions can be significant, while some are not. This
information could provide more insight into the effectiveness of
drugs during development and should be considered as one primary
direction in the next research generation.

Comparative vis, translation between layout and visualization:
Since the data collected in biology is heterogeneous, researchers
would like to compare similar and dissimilar pathways across dif-
ferent organisms, cell compartments, and species, to investigate
potential solutions for the interesting research questions. Multilayer
networks facilitate this opportunity since they integrate the hetero-
geneity into a standard scheme, and therefore enable researchers to
retrieve and provide a framework for the application of advanced
visualization techniques.

5 CONCLUSION AND FUTURE WORK

In this paper, we summarize the roles and challenges of various
graph structures used in biological pathway modeling and visual-
ization. Meanwhile, we collect frequently used hand-crafted and
machine-generated pathway maps, to give an overview on how the
graph, as well as multilayer networks, can be employed in the do-
main. Finally, we summarize the potential research challenges and
directions for multilayer network visualization, in the context of
biological pathways.

In the future, we attempt to investigate, step-by-step, the afore-
mentioned challenges, to further develop a unified biological path-
way visualization technology. Our first task is to conduct a general
framework that integrates various graph models by using multilayer
networks as central data structures. This can be an exciting research
direction in the sense that scientists can explicitly select and switch
the corresponding graph visualization based on their preferences.
This also facilitates the possibility to convert or translate among
different network visualizations to cognitively support data analysis
for various purposes.
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